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ABSTRACT 
 
Solid-state thermal neutron detectors are generally fabricated in a planar configuration by coating a layer of neutron-to-
alpha converter material onto a semiconductor.  The as-created alpha particles in the material are expected to impinge 
the semiconductor and create electron-hole pairs which provide the electrical signal.  These devices are limited in 
efficiency to a range near (2-5%)/cm2

 due to the conflicting thickness requirements of the converter layer.  In this case, 
the layer is required to be thick enough to capture the incoming neutron flux while at the same time adequately thin to 
allow the alpha particles to reach the semiconductor.  A three dimensional matrix structure has great potential to satisfy 
these two requirements in one device.  Such structures can be realized by using PIN diode pillar elements to extend in 
the third dimension with the converter material filling the rest of the matrix. Our strategy to fabricate this structure is 
based on both “top-down” and “bottom-up” approaches.  The “top down” approach employs high-density plasma 
etching techniques, while the “bottom up” approach draws on the growth of nanowires by chemical vapor deposition.  
From our simulations for structures with pillar diameters from 2 µm down to 100 nm, the detector efficiency is expected 
to increase with a decrease in pillar size.  Moreover, in the optimized configuration, the detector efficiency could be 
higher than 75%/cm2.  Finally, the road map for the relationship between detector diameter and efficiency will be 
outlined.   
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1. INTRODUCTION 
 
Neutron detectors fall into two categories: those suitable for detecting thermal (low-energy) neutrons, and those that 
directly detect and measure the energy of fast (high energy) neutrons. The Helium-3 tube based system has long been 
used for thermal neutron detection and the efficiency (depending on size) can be high and with recent advances can be 
70 % [1]. There are several significant drawbacks to many Helium-3 tube configurations in terms of portability as well 
as field deployment.  For example, the high pressure gas in the tubes makes transport via air shipment difficult; the 
high-bias voltage required can be a hazard if underwater; the stability of the system is in general poor; and the system is 
sensitive to microphonics. They are also normally bulky and difficult to configure. Current solid-state detectors suffer 
from poor resolution, moderate to poor fieldability, inconvenient geometries, low absolute efficiency, and a lack of 
directional information. The need for improved neutron detection is evident since neutrons are a highly specific 
indicator of fissile material. Recognizing this need, we propose to exploit recent advances in micro and nanofabrication 
and advanced materials, to build the next generation of neutron detectors for national security requirements. Room 
temperature high resolution, high efficiency and scalable radiation detection can be realized by manipulating materials 
at the nano and microscale. Using recoil charged particle tracking, the direction and the energy of the incident neutron 
can be reconstructed. 
 
This paper is organized as follows.  Section 2 outlines the roadmap for high efficiency thermal neutron detectors.  The 
detector device physics and use of converter materials are explained. Also, the device geometric impacts are shown to 
directly affect the detector efficiency with the possibility to reach over 75%/cm2.  Section 3 shows the mapping of the 
device geometry to techniques for producing such devices from sub 100 nm to micron dimensioned features.   Section 4 
discusses two technology hurdles that must be overcome in order to fabricate devices with geometries that will be able 
to reach over 75%/cm2 efficiency. These include the ability to etch high aspect ratio features with diameter of 2 µm and 
aspect ratio of 25 and boron deposition or growth with a high fill factor to fill the etched region.  Section 5 covers the 
device currently being fabricated as our proof-of-principle device.  Section 6 is the conclusion. 



 
2. SOLID STATE PILLAR NEUTRON DETECTOR ROADMAP 

 
Our proposed pillar semiconductor neutron detector is designed for detecting neutrons with a revolutionary 
improvement in efficiency. The pillar semiconductor platform is designed to eliminate the geometrical constraints that 
limit the amount of active neutron converter material in planar semiconductor neutron detectors.  For planar 
semiconductor detectors, usually a layer of neutron converter material is coated on the device surface (Figure 1a).  As 
an example, boron 10 is frequently used as a thermal neutron converter material.  The thermal neutron 10B reaction 
produces charged particles: alpha particles (1.47 MeV) and 7Li (0.84 MeV) [2].  These charged particles subsequently 
enter the semiconductor detector material to create electrons and holes for generation of electrical signals.  However, 
these charged particles can travel inside the converter materials only for a short distance.  The alpha particle travel 
distances in different materials are calculated by finding the mean range of travel distance in which the intensity of 
alpha particles drops by a half.  The range of (1.47 Mev) α in boron 10 is ~ 3.3 µm, as shown in Figure 2 [3]. Thus, if 
the boron layer is too thick, the charged particles will be absorbed before they reach the semiconductor material.  This is 
a design conundrum because the converter material needs to be sufficiently thick to capture most of the incoming 
thermal neutrons.  Furthermore, the as-generated charged particles that travel away from or even parallel to the planar 
semiconductor surface may not be detected.  
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Figure 1 (a) Schematic of planar solid state neutron detector [4] (b) proposed pillar semiconductor platform with 10B in a 

semiconductor detector matrix.  

A schematic of the planar detector is shown in Figure 1a to explain the limitation of active converter material thickness.   
The charged particles from the thermal neutron 10B reaction emitted from point A at distance Z1 from the detector have 
a low probability to reach the semiconductor detector.  Only forward directed particles emitted can reach the detector 
and produce signals.  The rest of the particles are stopped in the converter.  Clearly, the probability of signal generation 
for particles emitted from point B, at Z2< Z1<R, is much higher than for the ones from point A.  Thus, only a limited 
converter thickness is effective for the detection.  
 
The above discussion explains the reasoning for having the boron layer thick enough to capture the neutron flux but at 
the same time thin enough to allow the alpha particle to travel through the boron layer and reach the detector.  The 
upper limit of the detector thickness can also be evaluated by the mean travel range of alpha particles for different 
materials (Figure 2).  For α (1.47 Mev) in silicon, the range is ~ 5.3 µm.  For a denser material like GaAs, the range will 
be reduced (Figure 2).  
 
Our proposed design is a dramatic technology advance that can increase the neutron detection efficiency from the 
current 2-5%/cm2 [5], towards greater than 75%/cm2.  The platform consists of pillars of PIN diodes grown on planar 
semiconductor substrates (Figure 1b).  The converter material (boron) and the detector material are inter-digitated such 
that charged particles from the thermal neutron 10B reaction have a significantly higher probability of impinging the 
detector material due to the close proximity.   Moreover, the thickness of active converter materials is not limited, 
because most charged particles generated at different depths of the converter materials can be detected by the adjacent 
detector pillar.  
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Figure 2 Range of alpha particles in Boron, Silicon and GaAs. 

 
The device geometry for our experiments is evaluated by simulating the efficiency based on a combination of Monte 
Carlo and TRIM codes for statistically determination of the effective neutron cross section and the travel range of the 
charged particles, respectively.  The etch depth, pillar width and converter material and ratio with respect to the pillar 
width, are modeled with these codes. Preliminary data from the simulation, shown in Figure 2, indicate that the detector 
efficiency could reach 65%/cm2 for a pillar width (and converter width) of 2µm with an etch depth of 50µm.  This is 
over a 10 fold increase over the current state-of-the-art planar structure.  There is an additional increase of 31% by 
shrinking the device diameter from 2µm down to 100nm, for an equivalent etch depth of 50µm.  The relatively large 
etch depth of 50 µm is needed to capture the full thermal neutron flux, while the small device pitch is required to insure 
the alpha particles to strike the detector instead of being absorbed in the boron region. 
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Figure 3 Neutron detection efficiency versus etch depth of pillar structures for various silicon detector pillars 

of micron and sub-micron sized diameters and gaps filled with 10B. 
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Figure 4 Efficiency versus etch depth for technology size ranges. 

 
3. TECHNOLOGY MAPPING FOR DEVICE FEATURE SIZE 

 
The efficiency of the detector scales with the pillar size, where a smaller pillar diameter with a closer spacing give rise 
to a higher efficiency, as discussed in Section 2 and shown graphically in Figure 3.  Figure 4 shows the pillar diameter 
ranges to realize these devices: micron, sub-micron and sub 100 nm.  There are many technologies that can be applied 
to realize devices with these dimensions. In this section, we highlight the methods we are using to fabricate devices 
which cover the entire spectrum in question from micron to sub 100 nm devices.   In order to cover this range, we use 
both a “bottom-up” and “top-down” approaches which are discussed below. 

 
3.1 Bottom-up approach 
 
The bottom-up detector fabrication scheme is used to grow nanowires with sub 100nm diameter. The detector 
fabrication scheme is shown in Figure 5. First, metal catalyst particles, such as gold and copper are patterned on the top 
of a semiconductor such as silicon by evaporation of metals or deposition of metal colloids of well-defined size. The 
substrate is then put in a chemical vapor deposition chamber in which appropriate pre-cursors of semiconductor gases 
are supplied to the catalyst to synthesize semiconductor nanowires by the vapor-liquid-solid mechanism [6].  The space 
between the nanopillar structures are then filled with neutron converter material.  Lastly, the contact metals and 
electrodes are deposited on the top and bottom sides of the substrates for electrical connection to the detection 
electronics. 
 



 
Figure 5 Bottom-up approach for the fabrication of proposed neutron semiconductor detector. 

3.2   Top-down approach 
 
The “top-down” approach uses wafer scale patterning to define the pillars and subsequent plasma etching to etch the 
feature.  For the micron sized pillars we are using standard contact lithography.  In order to reach sub-micron 
geometries we have developed a process which uses polystyrene beads which are spin coated to define the pillars.  The 
technique can be used to define geometries from 500 nm to 100 nm.  This can be done by O2 plasma processing to tailor 
the geometry of the beads.  This is shown in Figure 6 and discussed in more detail in [7]. 

 
Figure 6 Top row shows top-view of polystryrene masked etched pillars, where the diameter of the bead is tailored by RIE etching in 

O2.  The bottom row shows the cross section view after STS plasma processing (see Table 2) to etch the silicon pillars.   
The scale bar is 750 nm. 

 
4.  TECHNOLOGY REQUIREMENTS 

 
The advanced solid-state neutron detector requires state-of-the plasma etching and boron processing.  The plasma 
processing is required for the top-down methodology, which is our first device.   
 

4.1 Plasma processing 
 

Plasma processing continues to be one of bottle necks for semiconductor device processing.  Devices requiring high-
aspect ratio etching include photonic crystals [8] and MEMS gyroscopes [9], among others. Our requirements for 
plasma etching are based on the relationship between detection efficiency and etch depth, as shown in Figure 2. With 
the increased etch depth and backfill with boron, a near complete thermal neutron capture is theoretically possible. This 
requires anisotropic features with an etch depth of 50 µm with an aspect ratio of 1:25 for the 2 µm diameter pillar 
detector geometry. Adequate masking materials and vertical etched features with smooth sidewalls are also required.  
These requirements can be met with high density plasma systems which employ high density plasma to provide a large 
ion flux with small ion energy that yields low-damage etching. For instance, electron cyclotron resonance system (ECR) 
and inductively coupled plasma (ICP) systems fall into this category.  Unlike reactive ion etching (RIE) systems which 



have the ion density coupled to the bias voltage, high density plasma etchers have these two parameters uncoupled to 
enable highly anisotropic etching with smooth features.   
 
Our initial devices employ a silicon based detector with etching by a deep RIE system [10] with an ICP plasma source 
and the time-multiplexed “Bosch Process”, which uses SF6 to etch silicon and C4F8 for the passivation step.  The time-
multiplexed process is carried out by etching with SF6 for 12 seconds and then a 9 second passivation step with C4F8. 
The etch rate is determined by the full cycle: etch and passivation. The plasma processing recipe is summarized in Table 
1. 

Table 1 Silicon plasma processing recipe for pillar fabrication. 

Deposition gas, C4F8 85 sccm, 11 mTorr
Etch gas, SF6 15 sccm, 5.5 mTorr
RF 600 W
Platen power 14 W

Silicon etch rate ∼ 0.4 µm/min
 

 
The deep RIE process is applied to samples with mask features with both micron and submicron diameter devices.  This 
is done to study the effect of radiation and charged carrier transport for various device sizes.  This will be used to 
experimentally validate our simulations shown in Figure 3.  Figure 7a shows SEM images of the 2 micron diameter 
pillar with a separation of 4 µm and an etch depth of 3.9 µm.  Figure 7b shows the silicon nano-pillars of ∼ 200 nm 
(with near equivalent separation) and an etch depth of 2.3 µm. For these relatively shallow etching (compared with our 
long term goal of 50 µm), the etch selectivity of the photoresist mask (S < 10) is not an issue. However, thicker and 
more robust mask layers such as thermal oxide or metals will be needed to achieve our long term goal for the high 
aspect ratio pillars with an etch depth of 50 µm. 
 

  
Figure 7 SEM cross sections of pillars etched with deep RIE etched pillars with diameter of 

(A) micron and (B) submicron. 
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4.2   Boron deposition 
 
The ability to deposit conformal and uniform coating of boron 10 is one of the key steps to the success of the proposed 
neutron semiconductor detector.  Since alpha particles are generated in the 10B (n, α) reaction, any air gap between the 
semiconductor and the boron layer will decrease the detector sensitivity.  Our proposed semiconductor pillar platform 
requires completely filling of the high-aspect-ratio space between the pillars with boron.  The common methods for 
boron deposition are electron beam (e-beam) evaporation, sputtering, and chemical vapor deposition: 
 
E-beam evaporation 
E-beam evaporation of boron is the most common method to deposit boron because of its simplicity in the requirement 
of the boron source. Extensive investigations were performed to optimize the evaporation of boron [11]. Since boron 
has a high melting point (2076ºC) and sublimation point (2550ºC), electron beam, rather than resistive heating, is 
required to supply enough energy for vaporization.  Boron source targets with low purity (90% or less) or uneven 
heating of the boron target will cause non-uniform evaporation rates and “spiting” of materials from the evaporation 
target. 
 
Presently, we are investigating parameters to optimize conformal coverage of boron between our micron-sized pillar 
structures by e-beam evaporation.  As the e-beam evaporation is a line-of-sight method of deposition, the photoresist 
pattern can easily create shadowing effects and therefore create small gaps between the vertical walls of pillars and the 
as-deposited boron layer.  
 
Sputtering 
Sputtering is another method to deposit boron onto high-aspect-ratio structures. Since the sputtering action of the boron 
targets would generate boron clusters in randomized directions, the as-deposited boron layer is expected to be more 
conformal to the geometry of the substrates.  However, as boron is a poor conductor charging of the target during 
sputtering will occur. Therefore, a pure boron sputtering target will usually yield low deposition rates unless the boron 
is coated as a thin layer on a conductor [11]. Thus, semi-conducting boron carbide (B4C) or doped boron is often used as 
the sputtering target to deposit materials with boron 10 isotopes.   
 
Chemical vapor deposition 
Chemical vapor deposition (CVD) is a well-known technique to produce conformal coverage of materials on high-
aspect-ratio structures.  Two of the common precursors for CVD of boron are diborane (B2H6) and decaborane (B10H14).  
Diborane exists as a gas at room temperature.  Thermal CVD with diborane has been successfully applied to grow boron 
films at 600-1000ºC [12]. Though the gaseous form of this chemical allows the ease of transport to the reactor, its high 
toxicity often imposes expensive safety precautions, such as the installation of gas cabinets and relatively expensive 
production of boron 10 isotopes of this chemical.   
 
Decaborane has become one of the preferred precursors for boron deposition due to its advantageous physical 
properties.  First, high purity decaborane can be easily obtained with sublimation purification processes (Sublimation 
temperature ∼ 70ºC).  Second, even though decaborane is toxic, since the decaborane is in solid form at room 
temperature, the materials can be easily contained and handled. Furthermore, decaborane has a lower thermal 
decomposition temperature (∼ 200-400ºC) for thin film deposition [13].  Since decaborane is in solid form at room 
temperature, it needs to be sublimed at 70+ºC into its gas form for delivery to the reactor.  Similar to other non-gaseous 
precursors, precise control of non-gaseous form materials would require special heated mass flow controllers and 
manometer set up to control the dynamics of materials deposition.  Based on the as-discussed consideration, we are 
currently developing CVD  boron deposition using decaborane. 
 

5. FIRST PROOF-OF-PRINCIPLE DEVICE 
 

Our first proof-of-principle device is illustrated in Figure 8b, a planar device is being processed at the same time for 
efficiency comparison (Figure 8a).  The epitaxial layer structure is shown in Table 2.  Here we are using a silicon based 
structure where the epitaxial growth is done by CVD.  Various semiconductors materials can be used with the approach 
we have outlined; tradeoff’s among semiconductors is discussed in [14].  The top layer is doped p+ to form an ohmic 
contact, while an n+ wafer is used to form the backside ohmic contact.  The backside contact is TiPtAu while the top 



planar contact is Al.  The contacts used do not require annealing. The pillars are etched by the “top-down” approach 
using a 2 µm dual layer of PECVD SiO2 and photoresist.  The etch recipe is shown in Table 1.  For the planar device the 
thickness of boron 10 tC = 3 µm, for the pillar device the etch depth de will define the thickness of the boron 10, for this 
structure we will step the thickness de=3,4,5,6 µm.  This will clearly show the increased efficiency of the pillar structure 
when de > 3 µm.  The planar structure is limited to the boron 10 thickness of 3 µm as discussed in Section 2.  Our next 
wafer design has an i-region of 25 µm, which will show a more dramatic efficiency increase. 

 
Figure 8 (A) Schematic of planar and (B) pillar detector. 

 
 

Table 2 Epitaxial layer structure of silicon PIN detector. 

P+ 2200 Å 1.3x1018 cm-3 Boron

i (n) 5.33 µm N ≤ 3x1013 cm-3 Arsenic

N+ Si substrate 1x1018 cm-3 Arsenic

P+ 2200 Å 1.3x1018 cm-3 Boron

i (n) 5.33 µm N ≤ 3x1013 cm-3 Arsenic

N+ Si substrate 1x1018 cm-3 Arsenic
 

 
 

6. CONCLUSION 
 

We have outlined a new approach to the detection of thermal neutrons by moving from a planar device structure to a 3-
dimentional matrix of PIN detector pillars, with converter material filling this matrix.  With this structure we have 
shown via simulations that the detector efficiency can have a revolutionary increase from roughly 2-5%/cm2 towards 
over 75%/cm2.  This efficiency can be realized by micron sized features, however further improvements can be 
achieved by shrinking the device geometry to the nanoscale.  Furthermore, by covering a wide range of device sizes, the 
transport of both radiation and charged carriers can be exploited.  This will make possible important advances in 
neutron detection as well as nanoscale device technology which has a multitude of applications as well as scientific 
discovery. 
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