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APPLIED AEROOY:\iAMICS OF WIND lvlAGIINES 

CHAPTER 1 

INTRODUCTI ON 

Recent interest in wind machines has resulted in the reinvention and 

analysis of many of the wind power machines developed over the past centuries. 

Because of the considerable time period since the last large scale interest 

in this country, which occurred over twenty-five years ago (1) a considerable 

amount of information that was published is out of print or not generally 

available. An excellent bibliography of the work published prior to 1945 was 

collected by the War Production Board in a report issued by ~ew York Univer­

sity (2). Golding's work (3) published in 1955 also contains an extensive 

bibliography and covers the work done in England in the 1950's. It is the 

purpose of this paper to review the aerodynamics of various types of wind 

power machines and to indicate advantages and disadvantages of various schemes 

for obtaining power from the wind. 

The advent of the digital computer makes the task of preparing general 

performance plots for wind machines quite easy. Simple, one-dimensional 

models for various power producing machines are given along with their per­

formance characteristics and presented as a function of their elementary aero­

dynamic and kinematic characteristics. Propeller type wind turb ine theory is 

reviewed to level of strip theory including both induced axial and tangential 

velocities. It is intended that this publication be of use in rapid eval­

uation and comparative analys is of the aerodynamic performance of wind 

power machines. 



1.1 Role of Aerodynamics in Wind Power 

The success of wind power as an alternate energy sources is obviously a 

direct function of the economics of production of wind power machines. In 

this regard, the role of improved power output through the development of 

better aerodynamic performance offers some potential return, however, the 

focus is on the cost of the entire system of which, the air-to-mechanical­

energy transducer is but one part. The technology and methodology used to 

develop present day fixed and rotating-wing aircraft appears to be adequate 

to develop wind power. 

One of the key areas associated with future development of wind power is 

rotor dynamics. The interaction of inertial, elastic and aerodynamic forces 

will have a direct bearing on the manufacture, life and operation of wind 

power systems while at the same time have a minor effect on the power out­

put. Thus the aerodynamics of performance prediction, quasi-static in nature, 

is deemed adequately developed while the subject of aeroelasticity remains to 

be transferred from aircraft applications to wind power applications. 

1.2 Wind Power Machines 

Since 1920 there have been numerous attempts in designing feasible wind­

mills for large scale power generation in accordance with modern theories. 

This section describes representative types of these designs. 

It is convenient to classify wind-driven machines by the direction of 

their axis of rotation relative to wind direction as follows: 

1. Wind-Axis Machines; machines whose axis of rotation is parall el 

to the direction of the wind. 

2. Cross Wind-Axis Machines; machines whose axis or rotation is 

perpendicular to the direction of the wind. 
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CROSS-WIND-AXIS MACHINES 

SAVONIUS ROTOR 

The Savonius Rotor in its most simplified form appears as a vertical 

cylinder sliced in half from top to bottom; the two halves being displaced as 

shown in Figure 1.1. It appears to work on the same principle as a cup ane-

mometer with the addition that wind can pass between the bent sheets. In 

this manner torque is produced by the pressure difference between the concave 

and convex surfaces of the half facing the wind and also by recirculation ef-

fects on the convex surface that comes backwards upwind. The Savonius design 

was fairly efficient, reaching a maximum of around 31%, but it was very inef-

ficient with respect to the weight per unit power output since its construc-

tion results in all the area that is swept out being occupied by metal. A 

Savonius rotor requires 30 times more surface for the same power as a conven-

tional rotor blade wind-turbine. Therefore it is only useful and economical 

for small power requirements. 

-

Figure 1.1 Savonius Rotor 
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MADARAS ROTOR 

The Madaras Rotor works on the principle of the Magnus effect. In essence it involves a 

boundary layer control technique which attempts to suppress boundary layer formation by 

reduction of the relative velocity between the fluid and the solid boundary. The simplest way to 

achieve the Magnus effect involves the rotating of a cylinder. Figure 1.2 shows the flow pattern 

which exists about a rotating cylinder placed in a stream at a right angle to the flow. On the 

upper half of the cylinder surface, when the flow and the cylinder are moving in the same 

direction, separation is completely eliminated. On the lower side separation is only partly 

developed. Thus circulation is induced causing a lift force perpendicular to the flow and the axis 

of the cylinder to be produced. 
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Figure 1.2 Magnus Effect 

Madaras proposed to construct a circular track around which rotating cylinders, mounted 

vertically on flat-cars, would move. Each cylinder was to have been 90 feet high, 18 feet in 

diameter, and driven by an electric motor. The Magnus effect would propel the cars around the 

track and drive generators connected to the car axles. However the system's poor aerodynamic 

design, mechanical losses, and electrical losses, coupled with its unsuitability for use on 

mountain top locations, resulted in very little being done with this design. A single full-sized 



cylinder was built in Burlington, New Jersey for testing but no further development has been 

done since. 

DARRIEUS ROTOR 

Georges Darrieus of Paris filed a United States patent in 1926 for a vertical axis rotor 

sketched in Figure 1.3 below. 

Figure 1.3 Darrieus Rotor 

The Darrieus Rotor has recently been investigated by South & Rangi (20) of the National 

Research Council of Canada in Ottawa. The Darrieus rotor has performance near that of a 

propeller-type rotor and requires power input for starting. The simplicity of design and 

associated potential for low cost production make it a promising candidate for economical power 

production. The ability to scale the Darrieus type rOtor to higher levels of power production, 100 

kw or more, remains uncertain. To date the largest Darrieus rotors built are less than 20 feet in 

diameter. 
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WIND-AXIS MACHINES 

DUCTED ROTOR 

In 1954 the British built an experimental windmill with two hollow airplane-type blades 

as shown in Figure 1.4. Unlike conventional machines it has no coupling between the propeller 

and the generator. As the blades are turned by the wind, centrifugal force pulls air from the 

hollow tower through the blade tips. At the same time the pressure difference between the tip of 

the rotor and the blade pedestal also draws up air through the semi-vacuum created in the 100 

foot high tower. As air flows through the tower it passes through a turbine that drives a 

generator. The blade was 80 feet in diameter and is capable of producing 100 kilowatts in a 35 

mph wind at 95 rpm. 

AIR VENT 

GENERATOR 
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PROPELLER 

TUR8INE 

AIR VENT 

AIR INTAKES 

Figure 1.4 Enfield-Andreau Ducted Rotor 

In order to maintain constant rotor speed hydraulic motors were used to vary the blade 

pitch and were effective at wind speeds of 30 to 60 mph. The blades are designed so that they 



can flap under wind pressure of heavy gusts. The motion of the rotor to face into the wind is 

aided and controlled by a power operated system. The main advantage of this system is that the 

power generating equipment is not supported aloft. 

SMITH-PUTNAM DESIGN 

The Smith-Putnam windmill built at Grandpa's Knob in Vermont was the largest ever 

constructed. The rotor diameter was 175 feet and consisted of two stainless steel blades using 

NACA 4418 airfoil sections. The rotor and generator weighed about 250 tons and were 

supported by a 100 foot tower. 

The pitch control was automatic, keeping the blades at a constant speed of 28.7 rpm at 

wind velocities of 18 mph and above. As the wind velocity increased, the blades began to 

feather by turning edgewise. The blades were designed with an ability to cone up to 20° to guard 

against sudden gusts and still maintain a reasonably constant speed. The coning was itself 

damped by oil-filled cylinders. The power plant was designed to withstand wind up to 120 mph 

and 100 mph with six inches of ice on the leading edge. The wind turbine was intended to 

generate 1,000 kilowatts. 

The:turbine, shown in Figure 1.5, was erected M 1941 and operated as a test unit until 

February 1943 when the 24 inch main bearing failed and a replacement could not be secured for 

two years. In 1945 one of the blades flew off and ended experimentation with this design. 

In spite of the structural failure of the blade, the Smith-Putnam design illustrated the 

possibilities of electrical power generation by large scale wind turbines. 
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Figure 1.5 Smith-Putnam Wind Turbine 

CIRCULATION-CONTROLLED ROTOR 

The concept of the Circulation-Controlled Rotor Wind Turbine is quite similar to that of 

the Madams Rotor and the Flettner Rotor of the 1920's. Instead of rotating the cylindrical blades 

of the rotor, lift is generated by blowing sheets of air tangentially around the upper surfaces of 

the blades from small slots. This principle, briefly, is a boundary layer control technique to 

delay flow separation. Blowing re-energizes the low energy boundary layer of the upper surface 

of the cylinder thereby moving the point of separation further back on the cylinder. 

Consequently, the pressure drag is reduced but there is an accompanying increase in viscous 

drag. At the same time circulation is induced by blowing and there is an increase in suction on 

the upper surface and a decrease in suction on the lower surface, all of which generate lift. 



This design possesses a number of advantages. First, at zero lift the cylinder is 

insensitive to gusts, therefore the rotor would not tend to speed up with sudden gusts. Second, 

no flapping or coning is needed because the blade can be mounted rigidly to the hub without the 

difficulties of a conventional propeller blade that was solidly fastened. The large moment of 

inertia of a cylindrical cross-section of this type of blade causes it to be very stiff. The spanwise 

constant lift coefficient is achieved by adjusting the location of the slot, thereby foregoing 

complicated pitch controls. This design provides for easy construction, control, and a very rigid 

structure to cope with its operating environment. 

An analytical investigation of this design was made at Oregon State University and it was 

found that at high-tip speed ratios the compressor power to drive the jet was greater than power 

output from the rotor, while at low-tip speed ratios the required rotor solidity (rotor projected 

area divided by. the disk area) was large enough to offset the structural simplicity of a circular 

rotor. 

Figure 1.6 on the following page gives a performance comparison of the various types of 

rotors that have been constructed. 
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Figure 1.6 Typical Performance of Wind Power Machines. 
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CHAPTER 2 

TRANSLATING WIND POWER MACHINES 

2.1 DRAG TRANSLATORS 

Perhaps the most simple type of wind power machine is the device that loves in a straight 

line under action of the wind. 

Historically, wind-driven translating devices have been used for propulsion rather than 

power extraction. Analysis of translating lift-driven and drag-driven devices can be illustrative 

in examining various rotary machines since the translation can be considered as an instantaneous 

blade element of rotating machine. First, consider the machine to be driven by drag. Figure 2.1 

illustrates the action of the elementary drag device. 

Figure 2.1 Translating Drag Device 

For such a device the power extracted, P, is the product of the drag and the translation velocity. 

The drag device sees a relative velocity V.Q - v so that the power is expressed by 

P = Dv = (1/2) p (Ko v)2 C 
D 

Sv (2-1) 

11 



wind. At speeds below the wind velocity, the power output of a translator is seen to vary linearly 

with the translation velocity. In contrast the force produced by a translator is relatively 

independent of translator velocity at low speeds. The large speeds required for the translator to 

achieve high power extraction rates are the chief disadvantage as large speeds mean extensive 

capital investment in machines and land. Other disadvantages of translators are proximity to the 

ground and sensitivity to changes in wind direction. 
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CHAPTER 3 

WIND AXIS ROTORS; GENERAL MOMENTUM THEORY 

Now let us turn our attention to wind turbines. The propeller type windmill or wind 

turbine remains today, as in 1940 (1), the most efficient machine and the leading candidate for 

large scale wind power production. As a first step we will consider a one-dimensional analysis 

of the output of a wind turbine and then proceed to a. more detailed approach linking blade 

geometry to power output. 

3.1 RANKINE-FROUDE THEORY 

Starting with the axial momentum theory originated by Rankine (4) and W. and R. E. 

Froude (5,6) consider flow past a wind turbine as shown below. The free stream wind is V. 

which is slowed by a wind device. Applying continuity, momentum, and energy to the flow we 

may determine the thrust and power if the flow is assumed to be entirely axial with no rotational 

motion. 

17 

Figure 3.1 One-Dimensional Flow Past a Wind Turbine 



Two expressions for the thrust may be obtained. First, from the momentum theorem 

T = 
(Vo(, )= pAu (Voo -ui) (3-1) 

Second from consideration of the pressure drop caused by the wind machine 

T = AAp 
, 

where Ap =p -p- (3-2) 

Now the Bernoulli Equation may be used between free stream and the upwind side of the turbine 

and again between the downwind side of the turbine and the wake so that 

T p 
(V02,, (3-3) 

2 

together with the momentum expression we obtain 

+ ui 
U = 

2 

i.e., the velocity at the disc is the average of the initial and final velocities. If we denote 

- u aV., note that V. - Ui= 2aV. 
, 

the final wake velocity change V. - ui, is twice the 

velocity change at the disc. The thrust is not immediately of great importance; however, the 

power is. From the first law of thermodynamics, assuming isothermal flow, with pi = p. 

Or 

P = pAu 
1y,20 }= pA 

2 

u (v. +umv. 
2 2 c° 
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= 
441 ) 

1/2 pAV:: 

which has a maximum when a = 1/3 

Pmax 16 

1/2 pAV.3 27 

Thus a maximum power is defined. The term (a) is known as the axial interference factor and is 

a measure of the influence of the turbine on the air. The minimum final wake velocity is zero, so 

as ui = V., (1 
- 

2a), we obtain am ax = 1/2 
. 

When examining equation (3-6) it may be noted that the denominator is the kinetic 

energy of the wind contained in an area equivalent to that swept out by the rotor. Equation (3-6), 

however, does not represent the maximum efficiency since the mass flow rate through the disc is 

not AV., but Au. Hence the efficiency, power output divided by power available is given by 

V2 
pAu 

2 

= 
441 a) (3-7) 

The maximum efficiency is 100% at a = 1/2 which yields a power coefficient of 0.5. The 

efficiency at maximum power coefficient is 88.8%. 

Further one-dimensional modeling can be accomplished with the additional consideration 

of wake rotation. As the initial stream is not rotational, interaction with a rotating wind machine 

will cause the wake to rotate. In the case of a propeller, the wake rotates in the direction of the 

propeller, in the case of an energy extracting device (windmill), the wake rotates in the opposite 

sense. If there is rotational kinetic energy in the wake in addition to translational kinetic energy, 
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then from thermodynamic considerations we may expect lower power extraction than in the case 

of the wake having only translation. 

The following simple example will relate wake rotational kinetic energy to rotor angular 

velocity. 

Initial Kinetic Energy = ETi 

Power Extracted = P 

Final Kinetic Energy = E 
T2 

+ ER2 

Translation Rotation 

From thermodynamics 

P = ET1 E 
T2 

ER2 

as P = (torque) x (angular velocity), note that increased torque produces greater wake angular 

momentum and thereby greater wake rotational kinetic energy, so, for a given amount of initial 

energy ETi 
, 

the greatest power extraction will occur when ER2 is low which means high 

angular velocity and low torque. 

3.2 EFFECT OF WAKE ROTATION 

Joukowski (7) considered the effect of wake rotation in the analysis of propellers. 

Adopting his notation to the analysis of wind turbines, the effect of wake rotation on power 

removal may be estimated. The wake flow model, if assumed to be irrotational, produces 

unrealistic rotational velocities near the rotation axis, however the contribution of the regions of 

high angular velocities may be subtracted out and a rotational core inserted yielding a simple 

model which affords utility to the results in establishing bounds. 
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Using a streamtube analysis, equations can be written that express the relation between 

the wake velocities, both axial and rotational, and the corresponding velocities at the rotor. In 

addition, for certain special cases, an expression for the power coefficient can be obtained. The 

main outcome of this approach is a measure of the effects of rotation on the relative values of the 

induced velocities at the rotor and in the wake. 

Figure 3.2 below illustrates the streamtube. 

The resulting equations are: 

Continuity 

Moment of Momentum 

21 

Rotor Wake 

Figure 3.2 Streamtube geometry 

urdr = uiridr (3-8) 

r2CO = ri2(01 (3-9) 



where co and coi are the rotor and wake angular velocities of the fluid. In addition, we may 

obtain an energy equation, 

Energy 

(u1 )2 
= / 2 00 

( 2 2 d 

dr1 
\ 

2 

+ 
(01 

+ 
(0" 

2 2 ulahri2 
U1 U 

where 5-2 is the angular velocity of the rotor. Finally an expression for the radial gradient in axial 

velocity may be obtained. 

(c2 wi) d (a)? ) 

dr]. \ 

These four equations may be used to obtain the relations between thrust, torque and flow in the 

wake. Closure cannot be obtained and one needs specification of one of the variables, say co, in 

order to obtain a solution. The particular fauns of the momentum equation used are Bernoulli's 

equation and Euler's equation. 

Several features of the flow may be noted. 

The pressure varies across the wake due to the rotational velocity. 

The rotor and wake axial velocities vary radially. 

The angular velocity of the fluid, which is opposite the direction of rotation of the 

rotor changes discontinuously at the rotor. 

Fluid drag has been assumed to be zero. 

Expressions for the torque and thrust for an annular element may also be obtained. 
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TORQUE 

THRUST 

dT = 
p(S) 

+ 
22-2) 

r2codA 

From the expression for the wake radial velocity gradient, it may be seen that when r2o) is 

constant the wake axial velocity is constant. 

Defining 

V., (1 b) 

u a Voo (1 a) 

We may obtain 

b' (1 42 
a = 1 

2 4X2 (13 a), 

and 

dQ = pur2o3dA 

cp power b2 (1 a)2 

y2 0/003 A b a 
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I.0 

0.8 

0.6 
8 

III 
0.4 

0.2 

Cp = 
11(1 a)2[2Na 

+ (1 N)b] 
b a 

24 

(3-13) 

0 0.1 0.2 0.3 0.4 0.5 

-u a: 

Figure 3.3 Effect of Tip Speed Ratio on the Induced Velocities for Flow with an 
Irrotational Wake. 

Figure 3.3 above illustrates the variation of the ratio a/b as a function of a and X. It may 

be observed that the axial velocity change at the disc is always approximately 1/2 the value in 

wake for tip speed ratios above 2. 

The power coefficient requires some modification since r2e) = constant produces infinite 

velocities near the axis. In lieu of an irrotational vortex wake, we may substitute a Rankine 

vortex wake. Letting N::----0/coma, we obtain 



The maximum power coefficient for a rotor with a Rankine vortex wake is shown below 

in Figure 3.4. As would be expected the highest values of power coefficient occur at high tip 

speed ratios where the torque and consequently the wake rotation are the least. 

0.6 

0.5 

0.4 

n> 8 

0.3 

0.2 

0 I 

0 

WMAX 

RD. 

Figure 3.4 Maximum Power Coefficient vs Tip Speed Ratio for a Rotor with a 
Rankine Vortex Wake. 

The flow model used to arrive at these results requires the flow to occur in annular, non- 

interacting steam tubes. Goorjian (8) has recently criticized this flow model. In spite of the 

difficulties associated with this model, it affords some insight into the effect of neglecting wake 

rotation in blade element theories of wind turbines. 

3.3 SIMPLE MODEL OF MULTIPLE FLOW STATES 

In the previous analysis it has been tacitly assumed that the device is operating as a 

draglike power extraction device, that is 0 <a < 1. For a < 0 it is quite simple to continue the 
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analysis to show that the device will act as a propulsion producing thrust and adding energy to 

the wake flow. This flow regime is typical of that type of a propeller. 

A particularly interesting case occurs for a> 1. This may be physically modeled by 

considering a powered propeller with its pitch adjusted so that it induces a forward flow, that is a 

propeller in the reverse thrust, or brake state. An idealized streamline pattern is shown below, 

that 

Figure 3.5 Propeller Brake State 

Continuing the analysis using the same approach as in Section 3.1 we find in this case 

Cp = 4a (1. (3-14) 

Force 
= 4a (1 a) CT 

, = (3-15) 
X pAV:, 

Thus, all three cases can be written in the form 

CT = 4a 11al (3-16) 
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Figure 3.7 Blades Force For Various Modes 
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occurring at a = 1/3. It should be noted that the windmill state can still exist for 0 = 0; that is, for 

the blade to be at zero angle relative to the plane of rotation. 

As 0 now becomes increasingly negative, the rotor enters the propeller brake state, a> 1. 

These states are sketched in Figure 3-7, which also illustrate the sense of the force and torque on 

the blade. We have avoided-discussing the flow regimes in the close vicinity of a = 1 since our 

simplified model will break down here. 

Thus, we can construct physical models of these states both by considering the flow at the 

disc itself and by considering the flow in the wake. 

In order to establish the possibility of the modes we must connect the force as represented 

by wake momentum to that as represented by lifting forces on the blade elements themselves. 

For our simple model we will consider, as an example, the wind axis rotor (propeller) and use 

conventional blade element theory ignoring swirl terms and assuming the wake induced flow is 

twice that at the disk itself. This model is sketched in Figure 3.8. 

Wind 
Direction 

L' 

30 

(1 a)V. 

Figure 3.8 Blade Element Coordinates 

Direction 
of Rotation 



Assuming we are in the propeller or windmill state a < 1. By momentum theory, the 

force on the annulus is given by 

dT = 
pV02 (1 a)2a Ircrdr (3-18) 

and the local thrust coefficient is given by 

CT = 
441 a) (3-19) 

Now considering flow at the blade element itself we get the circulation from 

F = WcCL/2 and with CL = 27csin a, 

= 
pnc[Vca (1 a)cos 0 Or sin 0] (3-20) 

Thus the force on the annulus is given by 

dT = OrFdr (3-21) 

XC CT = 
( a)cos 0 xsin 0] 

where x is the local tip speed ratio rON.. 

For the propeller-brake state a> 1 
, we get by momentum theory CT = -4a(1 - a), while 

the blade force is given by the same result as previously. We can define a local solidity a as a = 

cdrircrdr. Thus we can write for all a 

47cxa K1 a)cos x sin 01= 4a ila (3-23) 
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The nature of solutions to this equation can most easily be seen from Figure 3.9. Note that for 

0 <81 the simple powered thrusting propeller occurs, while for 0 <82 the propeller brake mode 

occurs. The angles in the intermediate range 02> 0 > 0 exhibit three possible equilibrium states, 

two windmill modes and one propeller brake mode. 

Propeller 
Brake 

Figure 3.9 Blade Element States For Various Blade Pitch Angles 

It is of interest to note that the slope of the. blade force lines is a fiuiction of solidity and 

tip speed ratio. 

For the triple mode case, it appears that the point shown as B is unstable and that A and C 

are both stable and occur depending upon how the state is approached. A simplified explanation 

of why state B is unstable is as follows. Assume that at B, a, the induced flow is slightly 

increased, now the drag-force on the disk (following 8 = constant) becomes much larger than 
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that represented by the wake momentum, thus this wake momentum is further reduced, and the 

system moves towards a = 1.0. On the other hand, A and C are stable according to these 

arguments. Thus a working assumption in blade element theory is that no solutions with 

1/2 <a < 1 can occur. 

It should be stressed that the above is an idealized model and that it inevitably involves 

flow inconsistencies. For example, it can be seen that a model giving a < 1 on an annulus which 

has inner and outer annuli with the value of a < 0.5 will somehow violate flow continuity. 

We note that states of a> 0.5 should not occur in the major design range of a windmill 

However, in cases where it is necessary to prevent rotor over speed due to high incoming winds 

or reduced shaft torque loads, it may be possible to use the confused flow of the propeller brake 

state to dump energy. This is a method of speed control which is quite distinct from the normal 

blade feather technique in which a is reduced. Note that this behavior is not the same as blade 

stall, which occurs at the low X region of the characteristic. 

We note here that the present analysis should be considered a small perturbation model, 

thus should not be considered valid for a> 0.5. For example, for 0.5 <a < 1 the simple one- 

dimensional model developed here implies flow reversal in the far- wake and zero wake velocity 

somewhere between the actuator disc and downstream infinity, a streamline configuration which 

is physically unacceptable. Again the simple propeller brake analysis must be considered quite 

inadequate in the vicinity of a = 1. 

No satisfactory theories exist for flow in this region, although quite extensive research 

has been done on this problem in connection with helicopter rotor theory. In helicopter analysis 

this region is that associated with a lifting descending rotor where the anomalous states of the 

parachute brake, the turbulent wake, and the vortex ring states occur [Shapiro, (16)]. 
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For most normal windmill operating modes a is less than 0.5; thus it is seldom necessary 

to analyze conditions for a> 0.5. However, for off-design conditions spurious solutions with a> 

0.5 may well occur. Rotor performance for the entire range of a is discussed by Wolkovitch 

(17). 

It is of interest to note, as described by Wolkovitch, that many of the anomalies of flow 

near a = 1.0 can be removed by assuming that the freestream flow is not precisely axial, but 

yawed at some small angle to the rotor axis. The introduction of this additional degree of 

freedom eliminates some of the singularities which occur for axial flow. A classical approach to 

this problem is given by Lock, Bateman, and Townend (18). 

A generalized performance curve of CT versus a was constructed by Glauert (10) using 

these concepts and using data from a series of free-running windmill tests. This curve was 

shown in Figures 3.6 and 3.9. Since these were free running, these tests correspond to Cp = 0, or 

in helicopter terminology, the autorotative state. It should be noted that in the autorotative state 

one portion of the rotor is driving the remainder, thus in fact the rotor is subjected to non- 

uniform a, and the value of axial perturbation given is the mean a for the disc. 

3.4 DUCTED ACTUATORS 

Shrouds or ducts are frequently used to increase the static thrust of powered propellers. It 

has been well established that a duct can quite effectively reduce the slipstream contraction of a 

thrusting propeller and can thus increase its thrust/power ratio, at least at zero forward speed. It 

can be shown that, even ignoring skin friction, the effectiveness of the shroud reduces as the 

forward speed is increased, and when duct drag and other duct pitching moments are taken into 

account, the shrouded propeller is not effective technically. In calculations of ducted propeller 

performance it is usual to assume that the flow leaves the duct exit at freestream static pressure; 
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consequently, there is no further change in slipstream velocity and for purposes of calculation, 

the duct exit area may be taken as the ultimate wake cross section. In the case of a static free 

propeller, the ultimate slipstream is one half the propeller area. Thus any duct which causes the 

final slipstream contraction to be less than this will increase the thrust/power ratio of the system. 

It is of interest to observe that even a cylindrical duct of the same cross section as the propeller 

will increase the thrust, there will lave been no slipstream contraction. It should be noted that the 

increased force is represented by a forward thrust on the duct, and a major part of this 

contribution is the force on the leading edge and entry area of the duct due to the low pressures 

there. 

Because of the improvement in thrusting propeller performance due to a duct, it has 

frequently been suggested that a ducted windmill might have superior performance. A 

comprehensive analysis of ducted windmills is given 'y Lilley and Rainbird (19). 

From a physical viewpoint, the effect of a duct will be to increase the wake expansion. 

We have showed that for a free windmill the optimal wake cross section should be twice that of 

the windmill disc. Thus, if it is possible to cause the optimal wake cross section to be larger than 

this, white still keeping the wake axial induced flow at the optimal level of two thirds the free 

stream velocity, then, based on rotor area, the power coefficient will exceed the free rotor limit 

of 0.593. In effect the duct has caused more flow to be drawn through the rotor and increased its 

power extraction capacity. A simple analysis of this follows, in which it is shown that unlike the 

free rotor, a momentum type analysis cannot be made on this device without assumptions which 

are quite hard to justify. 

In Figure 3.10 we show a typical ducted windmill system. Assuming the mass flow 

through the system is rh 
, 

we can immediately write the power extracted as 
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vs. 

Figure 3.10 Ducted Windmill Geometry 

P = MAR = MY! 2a (1 a) (3-24) 

This force on the entire system (rotor and duct) may be written as 

T = riiVao 2a (3-25) 

We note that these equations are not closed in that we do not have an expression for th. For free 

actuator theory the remaining equation is readily obtained by stating that the force on the system 

is the force on the actuator which is given by T = AAp = AAH where A is the actuator area. This 

immediately gives the result th = pAVoo(1 - a) for the free propeller case. 

For our case, with the duct, it is still true that the propeller force is given by AAp, but the 

duct force cannot be determined by simple momentum theory since the pressure field on the 

outside of the duct is not known. By one-dimensional theory the pressure on the duct interior 

can be calculated, except for the region very close to the leading edge. Thus, using momentum 

theory one additional assumption is required. 
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We can consider this to be satisfied by assuming the velocity at the duct exit, which is 

shown as V.,,(1 - b). If we assume, as is done in powered ducted propeller theory, that the 

pressure at the duct exit is freestream static, then we get b = 2a and the mass flow can be 

determined as Iii= AepV.,(1 - 2 a). Then, basing the power coefficient on the duct exit area A, 

we obtain 

Cp = 4a 41 2a) (3-26) 

This expression can be maximumized to give Cp.. = 0.385 at a = 0.211. If we write power 

coefficient in terms of rotor area, then we get 

Cp = 4a (1 41 2a)Ae /A (3-27) 

and observe that if the duct to rotor area ratio exceed 1.54 then the power coefficient of the 

ducted system, based on rotor area, will exceed that of the rotor alone. At this level of analysis 

all performance characteristics are determined by the assumption of exit flow condition for the 

duct. This can be expressed by writing the power coefficient (based on exit area) and the duct 

exit pressure coefficient C*p which give us 

Cp = 4a (1 41 b) (3-28) 

C; = (2a b)(2 2a b) (3-29) 

It will be seen that, assuming the exit pressure is lower than freestream static, which must 

be the case, gives wake expansion downstream of the duct with a higher mass flow and higher 
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power coefficient. In studying Lilley and Rainbird's paper it must be noted the performance is 

plotted in terms of the assumed duct exit pressure. 

As described in the previous sections, it is possible in principle to compute the wake 

shape by potential flow techniques, assuming a contour, computing internal and external flows, 

and ensuring pressure continuity on the wake bounding surface. Evidently the details of the duct 

geometry must enter into this analysis. We note that the duct cannot be treated simply as a ring 

wing in a uniform homoenergetic flow since the essential addition of the actuator disc implies a 

wake of different energy, with the associated vortex tube surrounding the wake. 

Thus ducted windmills cannot be analyzed by any simple method and a proper 

performance prediction depends upon a modeling of the entire flow. It appears that assuming- 

the exit pressure coefficient is a poor approximation; since the result is directly dependent on this 

quantity which will vary notably for every duct rotor system, and even for a given system at 

different rotor loadings. 
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CHAPTER 4 

WIND AXIS ROTORS: VORTEX/STRIP THEORY 

4.1 VORTEX REPRESENTATION OF THE WAKE 

The wake of a windmill system consists of a flow of different total head from the 

mainstream. For an inviscid flow, the discontinuity in head may be represented by a sheet of 

vorticity. The mode of generation of this vorticity, and its geometry, can be of great assistance in 

developing models of the flow. In more advanced wake models we usually stipulate the wake 

vorticity distribution and then use the Biot-Savart Law to calculate the induced flow of this 

wake. It is then possible to compute the pressure and flow fields on the wake to determine 

whether it is in equilibrium. Thus a proper solution of the inviscid wake must involve both the 

kinematics and the dynamics of the flow. In other words the wake shape and strength must 

generally be determined by an iterative process, where the initial geometry and strength is 

assumed and the induced flow checked to assure the wake streamline and pressure fields are 

consistent. A similar situation occurs in ordinary wing theory; however, the interactive nature of 

the problem is usually removed by assuming the vortex wake leaves the wing parallel to the 

freestream flow. This implies that there will be downwash flow through the wake, a 

kinematically inconsistent situation. However, it is only in cases of very highly loaded wings 

that it is necessary to account for wake deformation. 

Analogous assumptions are used for the actuator disc, where it is assumed that the wake 

vortex tube is parallel to the freestream flow. 

If we consider the prototype actuator, a disc .which may arbitrarily be switched from zero 

to infinite porosity, we can create a model of the vortex ring shedding process. Assume that the 
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disc is oscillated forwards and backwards and is solid during the forward motion (against the 

mainstream) and fully porous during the rearward motion. The disc will now shed a series of 

ring vortices which will be convected downstream with the freestream as shown in Figure 4.1. 

Figure 4.1 Actuator Disc 

In the limit, if we assume a vortex tube of constant strength is developed, and using an 

hypothesis of light loads, the vortex tube will have the same diameter as the actuator disc. 

Standard methods are available to compute the induced flow of a semi-infinite vortex 

tube at its end. We will not go into these here, except to state the solution gives a uniform 

induced axial flow over the cross section, although the radial flows are infinite at the tube edge. 

I f another vortex tube of appropriate strength were added to this system, then the singular radial 

flows are removed and the axial flow becomes twice that at the end of a semi-infinite tube. This 

is another way of demonstrating the result already obtained from the momentum analysis, that 

the induced flow in the downstream wake is twice that at the disc. 

It will be observed that this system has no tangential velocity in the wake and hence there 

is no torque. For this to be an approximate model of a propeller type windmill, the tip speed 

ratio must be large so that for a given power the torque is in fact low. 
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The next refinement to add to this simple model is one which introduces torque. 

Consistent with actuator disc theory, we can model this with a large number of radial vorticity 

lines in the plane of the disc, representing a many-bladed system of constant blade circulation. 

In order to satisfy Helmholtz's Laws on the kinematics of vortex lines, we see that this implies a 

central vortex of finite strength with distributed streamwise vorticity along the wake cylinder 

(Figure 4.2). 

A variant of this model is to assume that the actuator disc is an annulus. Then the surface 

of the inner vortex tube consists of ring and spanwise vortex lines of similar geometry, connected 

by radial vorticity at the disc itself. 

Figure 4.2 Vortex Lattice System for a Multi-Bladed Rotor (Only Two Blades Are Shown) 

For a lightly loaded system in which the wake boundaries may be considered right 

circular cylinders parallel to the mainstream, this is a fully self-consistent model with axial and 

tangential perturbations entirely confined to this annular cylinder. In other words, the induced 

flow of such a system does not affect other annuli, as can be seen by superimposing two circular 

vortex tube systems. Another annulus of completely different induction could be located inside 
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or outside this one without affecting the induced flows in the first. Thus, the induced flow 

system of each annulus is a function only of the blade geometry in that annulus and the angle of 

attack or chord of the blade in neighboring annuli can be changed without affecting adjacent 

induced flows. This interesting result of annular independence is the basis of blade element 

theory which assumes that annuli do not interact. We note that this is different from the situation 

in wing theory, where changes in geometry at one spanwise station will- affect induced flows at 

all other stations. It is apparent that it is the idealization of continuous streamwise vorticity on 

the vortex wake tube which effectively isolates the induction of an annulus. Thus for non- 

interactive blade element theory to be valid requires that the product of the number of blades and 

the tip speed ratio should be large. 

We note also that the concept of a continuous bounding vortex sheet composed of vortex 

rings permits differences in total head between the flows separated by the sheet. Thus it permits 

the wake flow to be of reduced total head, as assumed in simple models. 

If we now consider a more realistic rotor system having a finite number of blades and 

rotating at a finite velocity a somewhat different situation occurs. Assuming that vortex 

shedding occurs only at the root and tips and that the vortex lies parallel to the local flow, then 

the wake vortex geometry becomes as sketched in Figure 4.3. The helix angle of the vortices is 

directly related to the tip-speed ratio. 

We note that this finite bladed model contains somewhat similar structure to that of the 

wake of Figure 4.2, where the ring and streamwise vortex systems could. be considered as 

components of the helix system of Figure 4.3. We note also that a large tip-speed ratio, or a 

large number of blades will cause the finite helix sys tern to be more densely packed, so that the 

idealization of a continuous bounding vortex sheet becomes more realistic. 
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Figure 4.3 Idealization of Vortex System of a Two-Bladed Rotor 

However, examination of Figure 4.3 will illustrate that near each blade the flow and 

vortex system is similar to that of a high aspect ratio wing. Consequently, a vortex of finite 

strength cannot be shed from the tips, since this would imply infinite induced washes there. 

Thus the local situation becomes quite similar to that of a yawing wing and a continuous sheet of 

voracity is shed from the trailing edge. Generally, this voracity is concentrated near the tip so 

that the idealization of a finite strength tip vortex may be quite adequate a short distance from the 

blade. It will be noted that for the finite bladed model there is spanwise interaction in the sense 

that the load on each spanwise section does influence neighboring sections so that blade element 

theory must be considered an approximation for a rotor with few blades at low advance ratios. 

An analysis for a two-bladed rotor system at very low advance ratio is given by 

Kuchemann (21), where the rotor is modeled as a rolling high-aspect ratio wing. 

The model in which the blades sheds a system of helical vortex sheets is generally termed 

the Goldstein Model. This elegant model is more complicated than most and we will not discuss 

it here. 
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4.2 ANNULUS FLOW EQUATIONS 

A frequently used and accurate method for performance calculations for propellers and 

helicopter rotors is to assume that the flow through the rotor occurs in non-interacting circular 

stream tubes. This method when used in conjunction with the induced velocities has been called 

by a variety of names including modified blade element theory, blade element theory, vortex 

theory and strip theory. The method, which can be seen to assume locally 2-D flow at each 

radial station, proceeds as follows. 

The element of a wind turbine rotor illustrated in Figure 4.4 is viewed from the tip 

looking towards the axis of rotation in Figure 4.5. Here the relative wind, W, is shown in 

relation to the local blade pitch angle 0 and the local angle of attack, a. The plane of rotation is 

in the x-direction and the y-direction is normal to the blade in the downwind direction. 

where CL and CD are the- sectional lift and drag coefficients based upon the local relative 

velocity W and the local angle of attack a. 
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From the diagram, the following trigonometric relations may be verified 

a = (I) (4-1) 

1 a Vco 
(4-2) tan (13, = 

1 + a' ID 

Cy CL cos 4) ± CD sing) (4-3) 

Cx = CL sin(I) CD COS (I) (4-4) 



vc. 
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Figure 4.4 Rotor Blade Element 

Figure 4.5 Velocity Diagram for a Rotor Blade Element 



A relation between the axial interference factor a and the forces developed on the blade 

may be obtained by equating the axial force dT generated in an annular element of thickness dr 

by momentum considerations to the axial force predicted from blade element aerodynamic 

considerations. From momentum 

dTm p (27crdr) u (Ka u 
1 

) (4-5) 

while for B blades each having local chord c, 

dTB = Bc pW2Cydr (4-6) 

Equating these two expressions and assuming that the local wake axial interference factor b = 2a, 

one obtains 

a BcCY 

1-a 87cr sin2 
11) 

In a similar manner, the torque determined from angular momentum considerations is 

equated to the torque developed from the blade element in an annular differential stream tube. 

From the moment of momentum theorem one obtains 

dQ = p (27Erdr)ur (2an) (4-8) 

where the angular velocity imparted to the slip stream has been assumed to be twice the angular 

velocity at the rotor disk. The blade-produced torque is 

dQ = pBc 
w2 

Cdr 
2 
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Combining these relations 

a' BcCx 
(4-10) 

1+ a' 47cr sin .2(1) 

If suitable airfoil sectional performance data is available, then the local flow conditions at a 

given radial station r may be determined by the following procedure: 

Given r, c, CL(a),. CD(cc), 0, V, S2 

Guess a and a' (a = a' = 0 is acceptable to start) 

Calculate (i) (4-2) 

Calculate (4-1) 

Calculate CL and CD 

Calculate Cx and Cy (4-3 and 4-4) 

Calculate a (4-7) 

Calculate a' (4-10) 

Go back to step B and repeat 

Once the above iteration converges the sectional flow properties are known and the local 

contributions to torque and axial force may be integrated to determine the overall torque and 

axial force of the rotor. Blade airfoil section changes, twist and blade taper may be 

accommodated quite readily. 

The expressions developed so far required some modifications and qualification. First, to 

qualify the above procedure, note the flow patterns illustrated below in Figure 4-6. It may be 

seen that recirculating flow may occur. Such a flow pattern is not consistent with the 

assumptions leading to equations (4-7) and (4-10), therefore, the above analysis is not valid. A 
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criterion for determining the onset of recirculating flow may be obtained from wake momentum 

considerations. The velocity in the wake u1 = V00(1 - 2a), hence for a> 'A 
, 

recirculation can 

occur. This consideration will be modified in the next section. A helicopter, in going from 

vertical ascent to autorotational descent can pass through the various states illustrated in Figure 

4-6. Glauert (10) used experimental results to quantify the turbulent windmill and vortex ring 

states of a rotor. 

---s"--"----_,__------- 

(e) 

Figure 4.6 Working States of a Rotor: (a) propeller; (b) zero-thrust; (c) windmill; 
(d) turbulent windmill; (e) vortex ring 
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4.3 TIP LOSS MODELS 

The previous analysis requires some modification because of the pattern of shed vorticity. 

The flow at any radial position has been assumed to be two dimensional. Radial acceleration and 

wake-induced flow at the tip can alter the assumed flow pattern. The effects of radial 

acceleration can be neglected for most wind power machines; however, the wake effects cannot 

be neglected. So-called tip losses have been treated in a variety of approaches, the simplest of 

these being to reduce the maximum rotor radius to some fraction of the actual radius, 

characteristically on the order of 97% of the actual radius. Prandtl (11) and Goldstein (12) have 

analyzed flow about lightly-loaded propellers (negligible wake contraction) and developed 

models for the reduction of circulation due to wake interaction at the tips. The result of Prandtl's 

and Goldstein's approach is circulation-reduction factor F, such that 

(4-11) 

where B is the number of blades, F is the circulation at a radial station r and Fc, is the 

corresponding circulation for a rotor with an infinite number of blades. The factor F is a function 

of tip speed ratio, number of blades and radial position. Of the two models the Goldstein model 

is the more accurate however, since Goldstein's flow model involves an infinite series of 

modified Bessel functions, it is more difficult to use. Since there is little difference in results for 

situations involving three or more blades, the Prandtl model which yields a simple solution can 

be used. 

The incorporation of the tip loss factor into equation for induced velocities proceeds as 

follows. 
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The physical meaning of the tip correction is virtually that the maximum change of axial 

velocity, (V. - ul) or 2aV., in the slipstream occurs only on the vortex sheets and the average 

velocity change is only a fraction F of this velocity. Thus the velocity change 2aV. becomes 

2aFV. and in similar manner, the angular velocity change is written 2a'FQ. Equations (4-7) and 

(4-10) then become 

a aC 

1 - a 8F sin2 (I) 

a' aCx 

1+a' 8F sin 4) cos (I) 

where F is the Goldstein tip correction or the Prandtl tip correction factor and the quantity a is a 

local solidity given by a 
. 

A further refinement of the analysis can be made in the axial 
7tr 

flow velocity u through the rotor disk in equation (4-5) is assumed to vary in the same manner as 

the wake velocity. The average flow velocity through the rotor is then given by u = V.(1 - aF). 

Equation (4-13) remains the same, however, equation (4-12) becomes a quadratic 

(1 aF)aF 
= aCY 

8 S1I12 (I) 
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(4-12) 

(4-13) 

(4-14) 

The derivation of equations (4-13) and (4-14) is given in Appendix II. 

The use of equation (4-14) in lieu of (4-12) yields slightly higher performance and 

significant reduction in the number of iterations required for convergence. It may be noted that 

the criteria for recirculating flow becomes aF > 



The Goldstein tip correction for a heavily loaded rotor may be determined following the 

method of Lock (13). Lock's approach bases the calculation of F on the local value of (I), so that 

F = F (q), r /R). The angle 4) defines a local speed ratio via the relation 
IA 

cot.* The 

corresponding tip speed ratio is tiao = RpIr and thus the Goldstein tip correction factor F = 

F(p,,g,,a) can be determined. As a practical consideration it may be noted that at low tip speed 

ratios the tip loss is appreciable over the entire blade. In such cases this approach ceases to be a 

tip loss correction, instead being a dominant factor in the calculations. Prandtl's F factor is given 

by 

where 

f =B Rr 
2 R sin 4) 

2 
-1 r F = cos Lexp 

7C 
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A (4-15) 

(4-16) 

As the factor F has been derived for a frictionless rotor with optimum distribution of circulation 

along the blade, the approximate nature of the previous analysis should be noted. 

Figure 4-7 gives the calculated power coefficient of the Smith-Putnam Wind Turbine (1) 

as a function of tip speed ratio. The Smith-Putnam turbine employed an NACA 4418 airfoil 

which has discontinuously twisted 50 along a 65 foot length. The turbine diameter was 175 feet 

with an 11'4" chord. The Goldstein tip correction was used to develop the curve. 

The effect of pitch angle can be seen in Figure 4-7. Increased pitch reduces the 

maximum power but can increase the power available at low tip speed ratios. Figure 4-7 also 

can be used to illustrate some generalizations concerning wind machines. At low tip speed 



ratios, the power coefficient is strongly influenced by the maximum lift coefficient. The angle (1) 

is large at low tip speed ratios and much of the rotor, partieularly the inboard stations, can be 

stalled when operating below the design speed. At tip speed ratios above the peak power 

coefficient, the effect of drag becomes dominant. A high drag coefficient will result in a rapid 

decrease in power with increasing angular velocity. Finally at some large tip speed ratio the net 

power output will become zero. If the slope of the power curve at Cp = 0 is negative, the rotor 

operation at zero power output (feathered) will be stable, since for constant wind velocity, 

decreased rotational speed will result in positive power output which in turn will return the rotor 

to its original speed. The steeper the curve, the greater the stability. 
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0.4 

0.3 
itl>8 

0_ cq 0.2 

o 0.1 

52 

4 8 l0 12 

R 

Figure 4.7 Calculated Performance of the Smith-Putnam Wind Turbine. 
°pitch = 00, equations (4-13) and (4-14) 

Opitch = 5°, equations (4-12) and (4-13) 

°pitch = 00, equations (4-12) and (4-13) 



A plot of power coefficient versus tip speed ratio yields infollnation concerning power 

output, efficiency, and rotation speed for a given wind velocity. Another type of display that 

illustrates rotor performance is a plot of power versus wind velocity. Retaining Cp and X as our 

variables, the power is directly proportional to Cp/X3 while velocity is given by I/X. Figure 4.8 

illustrates the Smith-Putnam wind turbine calculations shown in Figure 4-7. 
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Figure 4.8 Power Output Versus Wind Speed For the Smith-Putnam Wind 
Turbine Op -= 



Note that at constant RPM and pitch angle, the stall controls the maximum power output 

and drag controls the starting velocity. Another point of considerable importance is the location 

of maximum power coefficient. Operation near the point of maximum power coefficient will 

give the greatest increase in power for a given increase in wind velocity and hence the greatest 

sensitivity to wind speed fluctuations. 

4.4 THE OPTIMUM ROTOR; GLAUERT 

Glauert has developed a simple model for the optimum windmill. The approach used is 

to treat the rotor as a rotating actuator disk (i.e., corresponds to a rotor with an infinite number of 

blades) and set up an integral for the power. The power integral is made stationary subject to an 

energy constraint; the results yielding the maximum power output for a given tip speed ratio. 

The relation for the power coefficient is 

where 

Vco 

= 
8 ix 

3 dx CP = 
Y2 pVco37CR2 x2 ° 

x = 
rQ 

= 

RS) 
, 

a = 
V u 

o, and a' = 
Voo Vco 

Since the integral for the power involves two dependent variables, another relation is required. 

This is the energy equation 

a'(1a')x2 
= 

a(1a) (4- 1 8) 
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Perhaps the most unique way of illustrating this relation is to consider the velocities at the rotor 

plane. The flow is assumed to be uniform in annular streamtubes with no circumferential 

variations. Under these conditions, two-dimensional flow may be assumed. 

Wind Direction 

So that 

Plane of Rotation 

Figure 4.9 Velocity Diagram 

In .the absence of drag, the velocity induced at the rotor must be due to lift and hence 

perpendicular to the relative velocity. Two expressions for tan may be developed under the 

condition that the total induced velocity is normal to the relative velocity. These are 

(1 4\7,0 a'rf) 
tan = (1+ a')rS2 

a'(1+ a')x2 
= a (1 a) (4-18) 
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The variational problem is now posed 

so that 

atx2 = 
(1 a)(4a 1) (4-22) 

Hence, 1/3 
._ . 

a 
._ . 

1/4. The variation in a, a', atx2, and x are given in Table 4.1. Since high 

speed rotors easily reach tip speed ratios of 7 or more, it can be seen that most of an ideal rotor 

Table 4.1 Flow Conditions For The Optimum Actuator Disk 

C = 
Fla a' x)dx rX 

P 
JO " 

With G(a, a', x) = 0 = a'(1 + at)x2 a(1 - a) 

The solution yields 

a, = 
3a 

4a 1 

(4-20) 

(4-21) 
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a a' afx2 x 

.25 00 0 0 

.27 2.375 .0584 0.157 

.29 0.812 .1136 0.374 

.31 0.292 .1656 0.753 

.33 0.031 .2144 2.630 

1/3 0 .2222 00 



will operate with a = 1/3 and the rotational velocity distributed in the form of an irrotational 

cor2 
t vortex i.e. as x --> Go, 

a'x2 
--> (2/9) 

02 rV 
The power coefficient for various tip 2V 2V 

speed ratios is given in Table 4.2. At low tip speed ratios the power coefficient is low because of 

the large rotational kinetic energy in the wake. At large tip speed ratios, the power coefficient 

approaches 0.593 and the wake rotation approaches zero. The variation of Cp with tip speed ratio 

is illustrated in Figure 1.6. 

Table 4.2 Cp vs X For The Optimum Actuator Disk 

Further infoimation may be obtained from this model using the blade element theory. As 

the quantities a and a' are known for each radial position, the relative velocity and the angle (I) 

may be determined. Figure 4.5 may be used to illustrate the velocities and forces in relation to 

the blade configuration. Of course, since we have assumed that the drag is zero, the only force 

that acts on the blade is lift. 
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RS-2 
Cp 

voo 

0.5 .288 

1.0 .416 

1.5 .480 

2.0 .512 

2.5 .532 

5.0 .570 

7.5 .582 

10.0 .593 



chord c are given by 

Bc 
dT = 

pW2CL cos q) dr 
2 

and 

The incremental thrust and torque acting on an annulus containing B blades each having 

2 dQ 
Bc 

= rpW CL sin (I) dr 
2 

The momentum expressions yield (assuming b = 2a) 

dT = 
4npA72 (1 a)adr (4-25) 

dQ = 47cr3pVc00 (a a)a'dr (4-26) 

So that 

a' BcCL cos if, 

1 - a 87cr sin2 (I) 

a' BcCL sin (I) 

1+ a' 8nr sin 4)cos4) 

(4-23) 

(4-24) 

(4-27) 

(4-28) 

Now a and a' are known as a function of x so that the shape of the blades may be determined. 

Table 4.3 gives the results. It may be noted that an optimum blade for a given X and constant CL 

will have a chord that approaches a maximum at xa-.= .7. 
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4.5 VORTEX THEORY 

The flow over real-rotors differs in many respects from the flow model used to describe 

the optimum actuator disk. A frequently-used model involves the use of bound vortices to 

represent lift. Following the concepts of vortex theory as applied to wings, each blade of the 

rotor is modeled as a bound vortex line. This simple scheme enables the induced flow at each 

section to be determined via the Biot-Savart Law. However, one may note that the induced flow 

will vary chordwise over the blade section. In order to fully represent the flow, the blade should 

be replace by a bound vortex sheet in lieu of a vortex line. Since most windmill rotors have very 

low solidity, the chordwise variation in flow may be neglected without loss of accuracy. 

In this scheme, the bound voracity serves to produce the local lift on the blade while the 

trailing vortex filaments induce velocities at each element of the blade. Several solutions for the 

induced volocity at a blade element have been obtained by solving partial differential equations, 

but the most straightforward method is a direct integration of the Biot-Savart Law. Now as 

Table 4.3 Blade Parameters For The Optimum Actuator Disk 
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(i) 

Bcf/CL 

27tVcc 

50 0.35 .497 

30 1.00 .536 

20 1.73 .418 

15 2.43 .329 

10 3.73 .228 

7 5.39 .161 

5 7.60 .116 



straightforward as this method may appear, it requires as an input the knowledge of the trajectory 

of the vortex filaments in the wake. Since the wake will consist of the superposition of a large 

array of vortex filaments, each acting on each other, the vortex trajectory (or configuration) 

cannot be established unless all the vortices are coupled. Now in Prandtl Lifting-Line Theory, 

the wake is assumed to lie in the plane of the wing and although one can calculate physically 

impossible velocities which flow thru the vortex sheet wake, the results of Prandtl's theory gives 

very acceptable answers. Just as the wake from a wing is a vortex sheet (which happens to roll 

up a snort distance downstream of the wing), the wake shed by a propeller may also be 

considered as a vortex sheet (which also rolls up in the wake). This approach may be likened to 

that used in elementary strength of materials where one assumes a deformation geometry and 

calculates forces here we assume wake geometry and calculate induced velocities. 

For an optimum rotor using vortex theory the Betz criteria (23) may be used. This 

criteria requires the wake to move back as a rigid screw surface. The writings of Betz, 

Theodoresen (24), Lerbs (25), and Weinig (26) cover analytical techniques required to define the 

optimum propeller. 
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CHAPTER 5 

CROSS-WIND AXIS MACHINES 

5.1 VORTEX MODELING OF THE WAKE 

Continuing the approach discussed in Section 4.1, it is of interest to construct the vortex 

system of a crosswind axis actuator, since this has not been discussed in the literature. 

We note first that if we assume the device to be modeled simply as an oscillating actuator 

disc of cross section as the device are shed and a wake system similar to that of the rotor actuator 

disc develops. Again we see that this may be an acceptable model for a many-bladed high tip 

speed ratio system. 

To construct a somewhat more realistic model, consider a crosswind axis machine having 

slender lifting blades, and for simplicity assume these do not move in a circular path about the 

axis, but are constrained to follow a square path at constant velocity and at zero angle of attack 

relative to the path. This model is shown in Figure 5.1. As a blade moves up the leeward sector, 

it sheds a starting vortex and a trailing pair as shown, and finally sheds its bound vortex as it 

assumes zero lift over the upper portion of the path. On passage across the forward portion a 

similar situation occurs. Thus the final wake system appears as shown in Figure 5.2. Note that 

the crisscross system on the sides will converge to a simple ring type system; that is, the 

streamwise vorticity component will cancel as the tip speed ratio and blade number is increased. 
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Figure 5.1 Vortex Shedding of Cross-Wind Axis Actuator 
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Figure 5.2 Vortex System of Single Bladed Crosswind Axis Actuator 

It can be shown that the solution for the induction of an infinite vortex tube of arbitrary 

cross section is the same as that of one of circular cross section, a uniform internal axial flow, 

and zero external flow. 

If we now consider the more realistic case of a crosswind axis system where the blades 

rotate about a fixed axis, then the lift and consequently the shed trailing and starting vorticity is 

continually changing. Adopting arguments similar to those used for the square path system and 

assuming high advance ratios, we now obtain a wake vortex system as sketched in Figure 5.2. 

This is importantly different from the previous case since there is internal spanwise vorticity 

within the tube. It can easily be shown that this spanwise vorticity is linearly distributed across 

the tube and that the induced internal axial flow is not uniform. Thus it appears that even an 

ideal cross-axis machine cannot achieve the ideal power coefficient of a wind axis system, since 

the induced axial flow is not uniform. 
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5.2 DARRIEUS ROTOR 

To analyze a Darrieus-type crosswind-axis device we adopt the standard approach of 

wing theory, which is to express the forces on the system by a momentum analysis of the wake 

as well as by an airfoil theory at the lifting surface itself. The expression for these forces 

contains unknown induced flows. By equating the wake and wing forces one obtains sufficient 

equations to determine the induced flows. 

For the device considered we assume that each spanwise (parallel to the axis) station 

behaves quasi-independently in the sense that the forces on the device at each station may be 

equated to the wake forces. In general, these devices can experience a windwise as well as a 

cross-wind force, so that the wake can be deflected to the side. 

Consistent with vortex theory, we will assume the induced flows at the device are one 

half their value in the wake. Thus we obtain that if the wake windwise perturbation is 2aV,o, 

then at the device itself the incoming flow has velocity V.0(1 - a), giving the flow system 

illustrated in Figure 5.3. 

In order to simplify the analysis we shall adopt the following assumptions, 

p = 0 

CD = 0 

CL --= 2rc sin a 

c R 
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Figure 5.5 Flow System for a Crosswind-Axis Turbine 
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Our results will then be limited to an inviscid analysis at high tip speed ratios where the 

maximum angle of attack a is small. The low tip speed ratio performance requires numerical 

analysis to model the nonlinear aerodynamics near stall. Using the above assumptions and 

starting with the Kutta-Joukowski law, we can write 

L = pWF = pW2cCL 

so that 

F = WCL = 7tcW sin a 
2 

Since the force on the airfoil can be expressed as 

P 
= 

p*xf 

we obtain 

one vavt sin2 ej (v sin 0 + vavt sin 0 cos 
0) ij (5-4) 

Now we can equate the force on the airfoil to the momentum lost in the streamtube which the 

airfoil occupies. Let the streamtube be of width dx when the airfoil goes from angular position 0 

to position 0 + dO. The width dx is related to dO by 

= Rd01 sin 0 I (5-5) 

The process will repeat itself every revolution so the time interval of our analysis shall be 

one period which is 27c/Q. Of this time period, the airfoil will spend a time increment of dO/Q in 
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c RS2 
a= 

2R Vco 

or for B blades 

Bc RS2 
a = 2R Kt, 

Now that a is defined, the blade force may be resolved into torque and radial components. 

The torque is given by 

Q = pncR K20 a)2 sin2 0 (5-10) 

The average torque for a rotor with B blades is 

sin 0 I (5-8) 

sinOI (5-9) 

the front portion of the streamtube and another time increment of dO/S2 in the rear portion of the 

wake. Since the streamwise force contribution from equation (5-4) is seen to be symmetrical 

with respect to the angles ± 0 we may write the blade force equation for the time period 2760 as 

dFblade = 2pncVtVa sin2 0 
dO 

(5-6) 

Now the momentum equation yields the force in the streamtube as 

dFmomentum = pRd0 I sin 0 I (1 a)Ko 2K0 a 
20n 

(5-7) 

Equating these two forces under the assumption that Va = V.0(1 - a) and Vt = RO yields an 

expression for the axial interference factor a for one blade 



This expression yields a maximum power coefficient of 0.554 when the quantity 

BcX/2R = am= 0.401. Further refinements can be made with consideration of drag and 

maximum angle of attack. The maximum angle of attack occurs approximately at the point 

0 = Tr/2 where 

am 1 Bc 
tan a 

X X 2R 

When a is set equal to am we may rearrange equation (5-13) to express the starting tip 

speed ratio. Using a. = 14° max we obtain 
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4 
Xstart 

Bc 1+2 

(5-13) 

(5-14) 

so that a three-bladed rotor with a one foot chord and a 20 foot radius would have a starting tip 

speed ratio of about 3. 

Since this type of rotor will not operate at low tip speeds, the drag losses may be simple 

approximated by assuming that the local velocity is W R.Q. The drag torque is then 

Q = 
[pnBcRY,20] 4 BcX 3 (BcX)2 

(5-11) ) 37T R 32R 

and the corresponding sectional power coefficient is given by 

Bc 
=7rX 

4 BcX 3 B2c2X2 
(5-12) Cp 

37r R 32 R2 



C 
and it may be seen that Cp =C D 

3 2 

5.3 THE CIRCULAR ROTOR 

At the high rotational speeds required for the Darrieus-type rotor, the inertial loads are 

large and result in substantial bending loads in the blades. These bending loads may be removed 

by deploying the blade in a shape similar to the catemary so that the loads are entirely tensile. 

The required shape has been investigated by Blackwell (22) and given the name troposkien. The 

curve is described by elliptic integrals and is approximated by a sine curve or parabola. The 

effect on performance caused by bringing the blades closer to the axis of rotation is substantial 

since both the rotational speed and the usable component of the lift are reduced. Figure 5.4 

below illustrates the troposkien curve and the local angle 7 between the blade tangent and the 

axis of rotation. 

CD 
2 2 

C 
3 

BCX3 
QD pR f2 BcR = D pVcc, 

2 2 

and the contribution to the power coefficient is 

AC 
p = - 

CDBc X3 
2R 

At this point, a solidity may be defined as a = Bc/2R, the ratio of blade circumference to disc 

diameter. The power coefficient becomes 

16 
2 2 C = noX X + a3X3 

13n CD \ 

3 4 62 

(5-14) 

(5-15) 

(5-16) 
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Figure 5.4 Troposkien, Circle and Caternary of Equal Length 

The analysis of the curved rotor proceeds in the same manner as in Section 5.2. If we 

analyze a unit height of the rotor, the expression for a becomes 

a = aX cos y sin 0 (5-17) 

where the product crX may be taken as the solidity and tip speed ratio at the point R = Rmax since 

this product is independent of R. The torque generated by a slice dz along the rotor axis is 

dQ 
2 

= pnBcVco cos y % aX cos y + 
3o-2X2CS2 

y 
dz 32 8 
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and the incremental power coefficient is 

dC 
p 

ciQ 4rcaX 
R cos y 

72--8 
GX cos y + a2X2 COS2 y 

2 dz dzy2pVA A 3n 8 
(5-19) 

The integration of equation (5-19) for an arbitrary geometry may be accomplished; one 

simple case is the circular blade for which a maximum power coefficient of 0.536 occurs at 

erX = amax = 0.461. The effects of drag and stall can be included in the above model by 

development of a blade element theory similar to that developed for the wind-axis rotor. 
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CHAPTER 6 

FORCES AND MOMENTS DUE TO VERTICAL WIND GRADIENT 

6.1 INTRODUCTION 

In the analysis of rotors covered previously, the relative wind was assumed to be unifoim 

and parallel and to be perpendicular to the plane of rotation of the rotor. In reality, both flow 

irregularities and rotor motion can occur. Real flows will be neither uniform, steady nor 

unidirectional. Vertical wind gradient, gustiness and-wind turning with elevation all present 

double-edged difficulties to the design and operation of wind turbines. First, the local flow 

conditions must be known; secondly, techniques to predict the magnitude of the effects of the 

flow variations must be adapted to wind machines The lack of knowledge of local flow 

conditions, particularly in regions of rough terrain represents a considerable bather. While some 

wind gradient data exists for flow over rough terrain, there is little or no data on turbulence 

spectra and wind turning. Slade (13) has reported the presence of considerable wind turning in 

the atmospheric surface layer over rough terrain. By contrast the knowledge of flow over flat 

terrain is much more complete. 

Extensive studies have been made of wind structure in the atmospheric surface layer over 

flat terrain Monin and Obukhov (14) have developed a relation for the mean flow that 

encompasses stable, neutral and unstable stratification. Their relation involved three parameters, 

the surface friction velocity, the surface roughness and a stability parameter, the Monin-Obukhov 

length. By contrast, the mean flow over rough terrain is frequently approximated by a power 

law relation with height 
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(Z - VR \hJ 

where the coefficient 
11 

is less than one. Because of the simplicity of equation (6-1), since it 

requires fewer parameters, and the fact that the wind variation over a limited range 100 to 200 

feet) is required for wind turbines we shall use the above relation. 

The departures from the flow studied previously have no first order effects on the turbine 

mean output, however, periodic variations in torque, time dependent side forces and pitching 

moments can occur. These forces and moments will effect the overall system dynamics and 

hence both the design and operation of a wind turbine. In addition to the aerodynamic forces and 

moments certain mechanical forces and moments are present. This section will deal only with 

the aerodynamic loads due to wind gradient. 

Both rotor yaw and flapping can induce large forces and moments. Rotor yaw can be 

treated using the analysis of Ribner (15), flapping moments and forces are included in the 

program described in Appendix I. 

6.2 THE EFFECTS OF VERTICAL WIND GRADIENT 

A vertical wind gradient will induce forces and moments as illustrated in Figure 6-1. The 

largest of these are the torque variation and the pitching moment. As would be expected the 

magnitude of these moments is dependent upon scale, since it is the velocity difference between 

the top and bottom of the rotor that is significant. Before proceeding further, it should be noted 

the incremental forces on a blade element have been designated normal (n) and tangential (t) in 

order to avoid confusion with the coordinates XYZ. Thus the (x,y) of Chapter 4 are now the (t,n) 

coordinates. 

(6-1) 
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Figure 6.1 Rotor in a Wind Gradient. 

Figure 6.2 on the following page illustrates the blade velocity diagram. This velocity 

diagram differs from previous illustrations in that the freestream velocity V. has been replaced 

with the local wind velocity V. 

For a blade in the upper half of the rotor disk, the axial velocity will be higher than for a 

blade in the lower half disk. The increase in Vw increases both the resultant velocity w and the 

angle of attack a. At high tip speed ratios it may be seen that the principle effect of increased 

velocity (due to gradient or gust) will be an increased angle of attack. The variation in angle of 

attack in turn will cause variations in the force dFt and df',1 with the angle of rotation. 

Expressions for the first and second order forces and moments can be generated from the steady- 

PITCHING MOMENT 



Figure 6.2 Blade Velocity Diagram 

state performance aerodynamics in the following manner The differential force on a rotor 

element may be expressed in terms of a Taylor Series about the rotor hub so that 

'AZ 2 
AZ + 

[dF, u2 +dF, u 
z zz 2 

aFt a2Ft 
where dFt = , 

dFt and u = 
u au au 2 Vref 

A similar expression may be obtained for dFn. These forces change from their hub values (Z = 

0) due to the variation in wind velocity with elevation. The distance AZ = rsin 0i, where Ai refers 

to the angle of rotation of the ith blade. Rewriting equation (6-2) in the form 

dFt =1T + TlA Z + T2 
A Z2 

2 
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Vw ( I -a) 

t 

(6-2) 

(6-3) 

dFt = dFt 
0 

+ dFtu Uz 



and expressing dFr, in the same manner 

dF=N0 + N1AZ +N2 
z2 

2 

we obtain the following forces and moments by integrating over the blade and summing over B 

blades, where B 2. 

TORQUE 

PITCHING MOMENT 

Q = 
irTo dr + fr2Tidr E s 
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(6-4) 

r3T2dr sin2 

i=1 

(6-5) 

2N1drIsin2 Oi + 
fr3N2 

dr jdOi (6-6) 
i=1 

2 

The summation over B equally spaced blades has been evaluated and it may be noted that wind 

gradient induces no first or second order yawing moment. 

Table 6.1 on the next page gives the values of the summations for various numbers of 

blades. 

unless B 
is odd 

The terms N1, N2, T1 and T2 remain to be evaluated in order to determine the magnitude 

of the forces and moments. As the method of differentiation is straightforward, let us indicate 

the approach by evaluation of NI. 



N1 = 
a(dFn) aU 

au az 
Z=0 

2 N1 = pVRcv 

AZ = pA/;'c a f(u2 
+ v2 )(CL cos++ CD 

sinliloauzi 

au 

where v rS, and u = 
vw (z). 

The- differenti VAT ation of CL requires some comment. As (I) = 13 

VR 

+ cc and i3 remains constant 

acL acL a4) c 
au aa a+ al La all 

The final result is 

CL cos4)+CL sin++ CD + sin2 (I)) 

a cos 4) 
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au 

az 
Z=0 

Z (6-7) 

Z=0 

(6-8) 

AZ (6-9) 

Table 6.1 Trigonometric Sums 

B = 2 B = 3 B = 4 

sin2 0; 1 cos2Qt 3/2 2 
i=1 

sin2 Oi cos O1 

i=1 

0 --- cos 30t 
4 

0 

sin3 Oi 

i=1 

0 
3 

sin3Qt 
4 

0 



The variation in torque coefficient may be evaluated from the preceding analysis 

A Q 
A, = CQ = Y2pVinR3 

where the integrals I and 12 are evaluated as 
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R2 d2Vw 
+12 VRdZ2 

Z=0 

(6-10) 

Similar type integrals are obtained by the other forces and moments. As can be seen 

from equations (6-11) and (6-12), considerable simplification can be made if the angle (I) is small 

and the value of CL and c are constant over the outer portions of the blades. In this case, closed 

form approximations can be obtained. 

6.3 APPROXIMATE RELATIONS 

At high tip speed ratios situ') (1) and by neglecting drag it may be shown that the 

following expressions may be obtained. 

= 
1 

'it 

, ft 
j 1.k2 COS2 cl))CL 

sin (I)+ 2 cos (I)CL 2 cos3 (1)CD 
cc 

\ ar9 
(f3 

R,RR1 
C 

7 N 

(6-11) 

"-hub 

and 

12 = 
X ft r 

Lk1 + 
sin24))CL 

CLa sin (I) CD 
sind)1(1 

+ a' )(1. 
tr)4 d(-1.) 

(6-12) 

TC 
R R R 

's hub 

dVw 

VR dZ 
Z=0) 



PITCHING MOMENT 

TORQUE CHANGE 

where 

GCL (1 a 2 

2B 

and 

1 dVw 

VR dZ 

M crXC 
La a) RdVw 

pV127ER 2 4 VR dZ 

0.104 

Z=0 
hh 

12 
crXCL (1 OaCLa 

5B 4B 
a) 

Some representative values may be obtained by using the data from the Smith-Putnam wind 

turbine. The long term wind data yield 
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sin2 Oi 

Z=0 i=1 

B 2 0 E S111 
i 

i=1 

0.14 
, 

hh =120' 

(6-13) 

(6-14) 
A Q 

1 

RdVw 2 

+12 

Z=0 

( R2d2Vw 

Z=0 

= 
pV12(.' TCR 3 

\ VR dZ VR(I7,2 

1 d2Vw 

VR dZ 2 

Z=0 



and using the values listed below 

a = 0.083 R = 87.5 ft. 

X = 6 B = 2 

CL = 5.5 CL = 0.6 
a 

a = 0.33 

we obtain, neglecting the flapping motion of the Smith-Putnam machine, 

PITCHING MOMENT 

MY 

TORQUE VARIATION 

Y2pV12(.7cR3 

A Q 
= 0.00153 (1cos Mt) 

Y2pV12: TcR3 

The numbers are difficult to judge. Accordingly, let us reference the forces to the drag of the 

wind turbine and the moments to the torque. 

D = CT Y2 pV0TR2 CT 
2 

3 

Q = CQ pVircR3 
, 

C = 
cP 

C = 0.4 
Q X P 

= 0.0173 (1cos 20t) (6-15) 
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PITCHING MOMENT 

TORQUE VARIATION 

A Q 
=O.023 (1 cos 200 

The yaw and drag forces are quite insignificant while the pitching moment is seen to be 

quite appreciable, amounting to a variation of 52% of the value of the torque. The torque 

variation is seen to be up to a 4.6% decrease in torque and hence also power. The torque 

variation itself requires more discussion. Equation (6-14) gives an expression for the torque 

change which may be modified to express the percentage torque change. 

Adopting the power 1 aw profile given by equation (6-1) we obtain 

A CQ Xo.(1 a)2CLa (112 
2,92 + 

4XCL 

CQ 
+111 ri 4Cp h 5(1 a)CL 

} 
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(6-18) 

sin2 
(6-19) 

where h is the height of the rotor hub. The effects of scale, tip speed ratio, solidity and load 

maybe estimated from equation (6-19). For example a rotor operating at constant RPM at wind 

speeds below the design point will have large X and low C. The torque variation for large scale 

will be appreciable. 

It may be noted that the bracketed expression in equation (6-19) is approximately equal to 

3. This expression has a maximum value when ii = 1/6. Experimental evidence for flow 

over smooth terrain yields r 0.17. 

0.259 (1 cos 200 (6-17) 



The expressions developed for the torque variation may also be used to evaluate the 

change in power output due to wind gradient. The variation in torque due to the wind gradient is 

approximately constant over a wide range of tip speed ratios. The net output of a wind turbine 

however changes appreciably with tip speed so that the percentage variation in turbine output 

due to wind gradient (or gust) increases greatly as the net turbine output approaches zero. Figure 

6.3 on the following page illustrates the percentage decrease in mean turbine output due to wind 

gradient for the Smith-Putnam wind turbine. Flapping motion of the blades was not included in 

this example. The absolute magnitude of the power variation due to gradient may be obtained by 

using the results of Figure 6.3 along with Figure 4.8. 
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Symbols 

A Projected rotor disc area 

a Axial interference factor at the rotor a 1 - u/Voc, 

a' Tangential interference factor at the rotor a' -= co/20 

Number of blades 

Axial interference factor in the wake b 1-u1N.,, 

Blade chord 

CL Sectional lift coefficient 

CD Sectional drag coefficient 

Cx Sectional force coefficient in the direction of rotation 

Cy Section force coefficient normal to the plane of rotation' 

Cp Power coefficient, 13/(l/2)pAK3 or PA1/2)pSVG,3 

D' Sectional drag force per unit length 

Lift to drag ratio, LID 

L' Sectional lift force per unit length 

th Mass flow rate 

Power extracted from the air 

Pressure 

Rotor radius 

Local rotor radius 

Rotor or translator projected surface area 

Axial flow velocity at the rotor 



Axial flow velocity in the wake 

Free stream wind velocity 

Resultant velocity relative to the rotor element 

X Tip speed ratio, R.Q/Vc. 

Local speed ratio, rON., 

Greek 

Angle of attack 

Angle between the wind and the normal to the translation velocity, Chapter 2; blade pitch 
angle, Chapter 5,6. 

(i) Angle between the plane of rotation and the relative velocity 

11 
Wind-height relation exponent 

Translator velocity 

Blade pitch angle, Chapters 3, 4; blade rotation angle, Chapters 5, 6 

Fluid density 

Rotor angular velocity 

Fluid angular velocity downwind of the rotor 
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WIND TURBINE PERFORMANCE AND LOADS PROGRAM 

The program package is written in the Fortran language and utilizes a Simpson's 

Rule/three pass method of numerical integration. It was written using a CDC 3300 under the 

OS-3 operating package at Oregon State University, therefore there may be some small 

differences for implementation on other systems. 

Logical unit numbers 60, 61, and 62 in the program refer to the card reader, line printer, 

and card punch respectively. 

The program package consists of a main program with eight subroutines: the main 

program PROP performs integration, input and output functions; subroutine TITLES prints input 

listing and titles for output; subroutine SEARCH calculates chord and twist angle at a given 

station; subroutine CALC determines axial and angular interference factors and related 

parameters; subroutine TIPLOS calculates the tip loss factor arid the hub-loss factor; subroutine 

BESSEL calculates modified Bessel functions; subroutines NACA00 determines sectional lift 

and drag coefficients for NACA profile 0012; subroutine NACA44 determines sectional lift and 

drag coefficients for NACA profile 4418; NACAXX is an empty subroutine for which a curvefit 

for any airfoil section can be placed without other program changes. 

For a given propeller geometry the following infointation must be inputted and/or 

changes made. 

Subroutine NACAXX must be rewritten to conform to airfoil section used, if 

other than NACA 4418, and 0012. 

Blade geometry must be specified, i.e., chord and twist as a function of percent 

radius. 

Operating conditions specified. 
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The parameters to be inputted are: 

Radius of blade R - ft 

Hub radius HB - ft 

Incremental Percentage (percent of radius for integration incrementation) DR 

Pitch angle THETP 
- 

degrees 

Number of blades B 
Wind velocity V - mph 

Tip speed ratio X 

Axial Interference Model Code AMOD 

10 original 
tl Wilson, seeAppendixII 

Altitude above sea level H - ft 

Coning angle SI - degrees 

Number of inputted stations for blade geometry specification NF 

NACA Profile NPROF - 4418 - NACA 4418 
0012 - NACA 0012 
9999 - Profile curvefit to be in subroutine NACAXX 

Tip loss model controller GO - 

Hub loss mode controller HL - 

0 - Prandtl 
1 Goldstein 

2- None 

0- None 
1 - Prandt 1 

Percent radius for stations RR (I) 

Chord dor stations (CI(I)) - 
ft 

Twist angle for stations THETI(I) - degrees 
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Input should be in the following format: 

Columns Card 1 Card 2 Card 3 Card 4 (Card 5 4 Card NF) 

1-10 R B H HL RR( I) 
11-20 DR V 81 CI(I) 
21-30 HB X NF (21-22) THETI (I) 
31-40 TBETP AMOD GO 
41-50 NPROF 

Output will be printed on the basis of 140 character-field width. 

There are several operation controllers that must be -inputted. These are AMOD 
, 

GO, 

HL, and NPROF. AMOD determines which method for calculation of axial and angular 

interference factors will be used. An input of 0.0 means the Glauert form will also be used, 

while an input of 1.0 means the square root form will be used. GO determines the tip loss model. 

An input of 0.0 means Prandtl's model is to be used, the input 1.0 means Goldstein's model is to 

be used, unless the number of blades is greater than two, then the program will choose Prandtl's 

model, and an input of 2.0 means no tip loss model is to be used. The third controller is HL; it 

controls the hub loss model. An input of 0.0 means no hub loss model will be used, while an 

input of 1.0 means Prandtl's method is to be used. An input of 0012 means subroutine NACA00 

is to be used, which is a subroutine that calculates sectional lift and drag data for the NACA 

profile 0012; an input of 4418 means subroutine NACA44 is to be used to calculate sectional lift 

and drag data for the NACA profile 4418; an input of 9999 means subroutine NACAXX is to be 

used. NACA)0( is a subroutine one must add a curve fit for sectional lift and drag coefficients 

as a function of angle of attack (degrees). This enables the user to use other profiles without 

changes to the program. 
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The following are the input Read and Format statements used. 

READ (60,10) R,DR,HB,THETP 
10 FORMAT (4F10.3) 

READ (60,10) B,V,X,AMOD 
10 FORMAT (4F10.3) 

READ (60,30) H,SI,NF,GO,NPROF 
30 FORMAT (2F10.3,12,8X,F10.2,14) 

READ (60,40) HL 
40 FORMAT (F10.3) 

READ (60,20) (RR(I),THETI(I),I=1,NF) 
20 FORMAT (F5.1,5X,F10.5,F10.5) 

It should also be noted, that the program takes approximately ten seconds to be compiled on the 

CDC 3300. Therefore, if many runs are desired, it would be desirable to convert the program to 

binary form. 
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0S3 FORTRAN VERSION 3.12 TITLES 05/17/74 1045 

233 1INE#) 
234 51 FORMAT(///# DATA INPUT RECORD #) 
235 52 FORMAT(///# RADIUS-FT,F7.2,10X,ANCREMENTAL PERCENTAGE =#,F6.4, 
236 110X,A-IUB RADIUS-FT=#,F5.2,10X,=PITCH ANGLE - DEGREES =,F7.4) 
237 53 FORMAT(/ NO. OF BLADES =#,F3.0,10X,#WIND VELOCITY - MPH =#,F7.2, 
238 110X,#TIP SPEED RATIO =#,F6.3) 
239 54 FORMAT(//# ALTITUDE OF SITE ABOVE SEA LEVEL-FT=#,F10.2,5X,#CONING 
240 1ANGLE-DEGREES ==,F7.3,5X,#NUMBER OF DATA STATIONS ALONG SPAN =#,I2 
241 1) 
242 55 FORMAT(///# PERCENT RADIUS#,5X,=CHORD-FT=,5X,#TWIST ANGLE-DEGREES# 
243 1) 
244 56 FORMAT(//5X,F5.1,8X,F10.5,10X,F10.5) 
245 57 FORMAT(///////# DATA OUTPUT RECORD4///) 
246 60 FORMAT(# RADIUS -- FT -- R#/# PERCENT RADIUS -- PC-R*) 
247 61 FORMAT(# AXIAL INTERFERENCE FACTOR -- A4# ANGULAR INTERFERENCE FA 
248 1CTOR AP#) 
249 169 FORMAT(# NORMAL FORCE -- FN4= TANGENTIAL FORCE --FT#) 
250 62 FORM4T(# LIFT COEFFICIENT -- CL=/= DRAG COEFFICIENT -- 00#) 
251 63 FORMAT(# COEF OF FOKCE-X-DIR CX4= COEF OF FORCE-Y-DIR CY#) 
252 64 FORMAT(= FORCE-X-DIR/BLAOE -- LB -- FX=/# FORCE-Y-DIR/BLADE - LB 

253 1--FY#) 
254 65 FORMAT(= MOMENT-X-DIR/BLADE FT-LB -- MX#/# MOMENT-Y-DIR/BLAOE 
255 1-- FT-LB -- MY#) 
256 66 FORMAT(= RELATIVEC VELOCITY -- FT/SEC --W#/# TORQUE -- FT-LB -- Q#) 
257 67 FORMAT(# THRUST COEFFICIENT -- CT-#/ THRUST -- LB --T#) 
258 68 FORMAT(# POWER COEFFICIENT -- CP# POWER -- KILOWATTS -- P#) 
259 69 FORMAT(# ANGLE PHI -- DEGREES -- PHI #/# REYNOLDS NUMBER -- RE NC:1#) 

260 71 FORMAT(# TIP LOSS FACTOR -- F#/ ANGLE OF ATTACK -- DEGREES - ALP 
261 1HA#) 
262 95 FORMAT(//# XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
263 1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX#) 
264 70 FORMAT(///9X,=A#,14X,#AP*,26X, FT=,18X,#FN#) 
265 58 FORMAT(///4X,#R#,10X,#PC-R#,8X,#F,7X,#ALPHA,9X,#CL=,9X,=CD#,9X,# 
266 1CX=,9X,#CY=,9X,#FX#,8X,*FY#,12X,MX#) 
267 59 FORMAT(//6X,#MY#,16X,#W#,15X,#Q#,11X,#CT#,13X,#T#,9X,#CP#,13X, 
268 1#P#,9X, PHI#,10X,=RE NO#) 
269 310 FORMAT(//# WILSON AXIAL INTERFERENCE METHOD USED#) 
270 320 FORMAT(//# STANOARO AXIAL INTERFERENCE METHOD USED#) 
271 100 FORMAT(//# TIP LOSSES MODELED BY PRANDTLS FORMULA #) 
272 101 FORMAT(//# TIP LOSSES MODELED BY GOLDSTEINS FORMULA *) 
273 659 FORMAT(//# NO TIP LOSS MODEL USED#) 
274 778 FORMAT(//# HUBLOSSES MODELED BY PRANDTL#) 
275 779 FORMAT(//# NO HUBLOSS MODEL USED#) 
276 200 FORMAT(//# RPM = #,F20.5,10X,=NACA PROFILE =#,I4) 
277 C 

278 RETURN 
279 END 
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CIN3 ZOE 
TOE 

'081/Id*I3H1=1.3H1 017 00E 
(dN)II3H1=13H1 66Z 

CAN)ID=D OE 86Z 
0.17 01 09 L6Z 

(1-C)I12H1+((T-C)I13H1-(Z-C)I13HIMI3d=13H1 96Z 
(T-0I3+C(T-0I0-(Z-C)ID)*?Ad=3 S6Z 

UT-01121-(Z-02111)/00T-02111-A21):1)=112d -176Z 

T+I=C OT E6Z 
311NIINOD OZ Z6Z 

OE 01 09 (AN'bI)AI 16Z 
OT 01 09 (0,01:11:1'39*Al:W)AI 06Z 
'001*((IS)S0D*X21)/Th=A111 68Z 

AN'T=T OZ 00 88Z 
X2I'Id'1WSIA'01-1):11V9DIA10109/IS'WCIOIAIV`d13HI'X'A'819W1101?1 NO141403 L8Z 

(SZ)II3H1j(SZ)I31(SZ)211:1 NOISN3LAII0 98Z 
S8Z 

3110INI-1331 N0I1V10dli3INI 3178Z 
?3VDNI1 V s3znun II NVdS 3H1 9NO1V srucivi NDAI9 V 3E8Z 

IV 319NV ISIMI 3H1 CINV CidOHD 3HI SBNIIAI213130 - HDI:IVDS 3 Z8Z 
T8Z 

(131-11101ANIIIAH1'I3'Til1iTh)H321V3S 3Nun0bens 08Z 

SNIT i1/LT/S0 ZIE N0IS:13A NV2111:10A ESO 



66 

(IIVA-(II-IcI)SOD*(IHd)NIS*A)/AVA=dV 19E 
('elAA+Z**(IHd)NIS*A)/1113A=V 09E 

X3*DIS*SZT'0=1:1VA 6SE 
A3*DIS*5ZT'0=):18A SLS 85E 

089 01 OD LSE 
(11VA'T)/2/VA=dV 9SE 

((A*A-1-219A)*.Z)/((NVD)111OS-A.21E1A*.Z)=V SSE 

0'0=NV3 (0'0'11'NV3)1I {7SE 
(A--T)*A*V3A*17+A*A=NVD ESE 

C(IHd)SO3*(IHd)NIS*A)/(XD*DIS*SZT.0)=IiVA ZSL 
(Z**(IHd)NIS)/(A3*DIS*SZT.0)=213A ISE 

SLS 01 OD (O'bTODWV)AI OSE 
(121*Id)/(3*3)=DIS 617E 

(IS)SO3*(IHd)NIS'C13+(IS)SO3*(IHd)S03*13 =AD 8.17E 

(I1-1d)SO3*CID-(IHd)NIS*13=X3 Li7E 
917E 

(1-11:11IHd'Thili'Id1H10948/A101XXI1XX)S01dI1 11VD Si7E 
1717E 

S3SSO1 enH C1NV dIl AO NOI1V111D1V3 3 E17E 
Zi7E 

0.0=13 (CZT/Id*7).3D'(VHd1V)SEIV)AI 008 1i7E 
(OCI3'O13IOVHd1VIIS'XIIIII)XXV3VN 11VD 017E 

(CI3i13IVHd1V'IS'XI:11111)XXVDVN 11VD OSS 6£E 
008 01 OD 8£E 

(CICI3'O13'CIVHd1V)00VDVN 11V3 LEE 
(03IDIVHd1V)00VDVN 11V3 009 9EE 

008 01 OD SEE 
(CICIDIC1101CIVHd1V)1717V3VN 11VD 1'EE 

(C1D1D'VHd1V)1717VDVN 11VD 0017 LEE 
(.8.I1717 VDVN 3sn -ram VIVI:1901d 31-11 ZEE 

)39011d BM_ NI C131;101S ION 31IAM:Id VDVN V CIBIAIDBdS AAVH noA )1VIts1110A 009 TEE 
(0091T9)31I2IM 

OSS 01 OD (66662:19.A01:1dN)AI 6ZE 
009 01 00 (ZTOO'bTA01:1dN)AI 8ZE 
0017 01 OD (8T171:7'b3.A01:1dN)AI LZE 

9ZE 
SIN3I3IAA303 DV11C1 C1NV IAI1 1VNOI1D3S AO NOI1V111D1VD D SZE 

. 17ZE 

TO(T0+VHd1V=CIVHd1V EZE 
d13H1-131-11-IHd=VHd1V ZZE 

IHA=21IHd TZE 
Th/11*1XX=01XX 

(VVIHd)NISAVVIHd)SOD=1XX 6TE 
(IHd)S9V=VVIHd 81E 

((lX*(AV-1--T))/(IS)SOD*(V-'T))NVIV=IHd LIE 
dV=V1-130 91E 

V=V1AS STE 
0171T-C OT OC1 171E 

31-1=1-111 LIE 
A/V93140*121=1X ZIE 

81`LI'91'S111711EliZIll'A0ThldN'MT TIE 
)(21'Id'11-eSIA101-1211VD31n10'0D'IS'WCIONY'd13HI'X'A'8'3W2ICI'll NOIAI1A/OD OIL 

60E 
'S213131/s1V1iVd 3S31-11 NOdf) D 80E 

IN3C1N3d3C1 SNOTIDN11A S3NI141:1313C1 CINV sniavb NJAID V IV S1101DVA 3 LOE 
33N3):13AII3INI 1:1V111DNV C1NV 1VIXV 31-11 S3NI1Al21319C1 - D1VD D 90E 

SOE 
(A'VHd1VINV11XidV/VIAD'XD'CIDT 170E 

113121IHcli3biAl'AbiAAAIADCAXALAIXIAAA'AXA'13HI'D'111)D1V3 3Nun0bens zoz 

St7OT t7L/LT/S0 Z £ NOISIGA NV211d0A ESO 



aNa 1117 
1\rdniAll 9117 

ST17 

"Z/1:113*(D*17*111*(V--I)*(dV+'T)*T 1711' 

((IHA)NIS*V1D+(II-Id)NIS*OD-1D*(Z**(IHA)NIS+ I )))+ 81= 81 £117 

7/1:10*(D*E**11:1*Z**(V-T)*(V10*(IHA)SOD'ZT ZI-17 

+CID*E**(IHA)SOD*.Z-(IHA)NIS*1D*(Z**(IHd)SOD-7)))+LI=L1 TTfr 
21DACI*):1Dc:1*(V-I1)*1A+91=91 0117 

liDdOIDA*1A+S1=S1 6017 
1DACI*1:1DA*(V-. T)*NA+171=171 8017 

IIDAO*Dd*NA+£1=E-1_ 1017 
:13c1C1(V-. T)*1A+Z1=Z1 9017 

1:1DACI*1A+ Ti= T1 6017 
(L'OZAZ`X017)1V141:10d 669 17017 

NdilA (669/19)B1n1M £017 
0c1*21D*(V-.T)*((iHd)ANV1V/dAD+AD*"Z)=NA Z017 

?:IDA*AID*(V-"T)*((IHcOANV1VicIXD+XD*7)=1A 1017 
XD-(I1-1d)NIS*VCID-1-(IHA)SOD*V13=dAD 0017 

AD-1-(IHA)SODANCID-(1-1c1)NIS*V1D=c1X0 66£ 
1OO*0/(0D-OOD)=-VCID 86£ 

TOO' 0/(1D-C110)=V1D L6£ 
X21/0=1:ID 96£ 

00:1*.Z)h1C1=1:1DACI 56£ 
AD*11D=d1 176£ 

XD*Td*T.LD=AO E6E 
(M*M)*(D*El*OHI:1*S*0)=T1D Z6£ 

(8H-1?:1)*AAA'''dAdlnlX 16E 
(E1H-111)*AXA=AXAINX 06£ 

AD*1SNOD=AAA 68E 
XD*1SNOD=AXA 88£ 

(D*(Z**NO*OH11*S.0)=1SNIOD L8£ 
SIA/3*M*OH21.--91:1 98E 

((IHA)NIS)/((IS)SOD*A*(V-. T))=M OS 58£ 
.178£ 

51101DVA 3DNa213A1:131NDIV1119NV D £8£ 
CINV 1VIXV NOdfl 11\1gC1N3d30 SNOLLONfld AO NOI1V11131VD D Z8£ 

18E 
311NI1NOD OT 08£ 

61E 
OS 01 09 (I000-31.(dVAN/11213-dVDSEIV)AI OL 81£ 

ILE 
3DN3911gANOD 110A 1S31 D 91E 

SLE 
(8"51AZ)1V141:10A 09 VLE 

AV 'V (09/19)31I2:1M ELE 
OL 01 09 (1.39.NV)AI 0£ ZLE 

TIE 
S(V11313+c1V)=AV OLE 

S(V1BEI+V)=V OV 69£ 
0£'01710£ (ST-0AI OTT 89E 

OTT/017'0E (0T-OdI 19£ 
06'017'0£ (17-C)AI 99E 

59£ 
'SN0I1V2131I 179£ 

2101DVA 331\13113A1131NI IIV1119NV CINV 1VIXV AO NINJdVJV 3 £9£ 
((IS)SOD*X1:1)/111=2:1Dd 08S Z9E 

61701 17L/L1/S0 31V3 ZI'E N0IS2GA Nt0:11):10A ESO 



TOT 

(14V*.Z)/(NV*(T-1,A1V*'Z))=NV 9L17 
'T+1A1V=IAIV SZt. 

(onv/n)*(2- (on*on-vT)/(mv*on*on))+ziAins=ztAins vti7 
00=3 (0.-1.19*LAIV)AI Z £L.17 

(S8Z.T**OCI)/T£0.0=3 ZL17 

Z 01 OD (01.31\l'InIV)AI T TL17 

(899.**011)/860'0-=3 0L17 
T 01 OD (otyaNlAw)i 69-17 

zninm+vms=vms 8917 

ZAT1D - (n*n±-r)/(n*n)=nAd oov t9-14. 

(£**ZA)/91+(Z**ZA)41+ZA/Z1+01=ZAT12 9917 
(OT**(11*11+'T))/T S9.17 

(OT**11*'9£-8**11*.0917-4-9**11*"590T-17**11*.£09+1411**SG--T)*fl*114:179=9-1. 17917 

(c**(n*n+-T))/(9**n*'i7 - v**n*-Tz+n*n*17-r--r)*n*n*'9I=i71 £917 
v**(n*n-F-T))*n>kn,o7-zi Z917 

(n*n-FT)/(n*n)-al 00£ T917 
0017 0.1. OD 0917 

ZAT1- aId*A*S.)NIS*.Z)/(IV*Id*A)=ZAT1D 6917 
UZA-C1)*(ZA-D)*(ZA-43)*(ZA-V))/(17**ZZ)+((ZA-D)T 8S-17 

*(ZA-9)*(ZA-V))/(E**ZZ)+((ZA-8)*(ZA-V))/(ZZ*ZZ)+(ZA-V)/ZZ=ZAII 1S17 
9S17 

"9*9=0 SS17 
'17,07=8 17S17 

£S17 
00£ 01 OD (SD2)di ZS-17 

(OIVIA/OZ)13SS3E1 11VD TS17 

(IViA1Z)13SS2E1 11VD OS-17 

Z*Z=ZZ 6t717 

A*A=ZA L-1717 

n*on=oz 9t+ 
(T-Fwv*z)=A Si717 

EIT=LAI OT OC1 171717 

EH' 
aoHlaw SNI31SC11OD 0 Z1717 

T1717 

00? 01 OD (T000-11*(((IHd)NIS)S9VDdI OUT Ot7-17 

SOT 01 OD 6E17 
T =A 171717 8£17 

SOT 01 OD L£17 
(a(T000-+ Z**(IHd)NIS)121bS*121*.Z)/((121-'d)*b)-)dX3)ASODV*(IdtZ)=A 9£.17 

311NI1NO3 00? S£17 
HIV 01 OD (0.Z.b3.0D)dI 996 17£17 

1717t7 01 OD (0.Z.b3'10D)dI ££17 
OOT 01 OD (0.Tb3.0D)dI ZE.17 

00? 01 op (olybaoo)di T£17 
996 01 00 (C/Z*..1.D.0)I 0E17 

0.0=1A1V 6Z17 
"T=VILAIV 8Zi7 

T =NV LZ17 

cro=vms 9n7 
wo=nAtris SZ17 

17Z.17 

"sassoi ON AO BSVD 31-11 210d 210 £Z17 
'A2109141 S#11CINV21d 210 1A2103H1 S#NI31S0109 NOdfl CI9SVO ZZ.17 

sassoi EinH C1NV dI1 3H1 S3NI1421319C1 - SOldIl 3 In' 
OZ17 

(1-121qHd112112:11Id111-110DVA1011`11)SO1dI1 ANuncmans 61t7 
8T17 

Si7O1 17L/LT/S0 ZI*£ N0IS213A NV211210d ES° 



CINB T617 

Nntru..] osv 
Id*d=d 006 6817 

((T000'T 88-17. 

+Z**(IHd)NIS)121bS*H1:1*.Z)MHI:1-120*b).-)dX3)dSODV*(IdtZ)=Id 005 L817 
006 01 OD 9817 

0-1=U S817 

005 01 OD (0'Tb3-1H)dI SOT 17817 

E8.17 

SNOIlVinDivD ssmanH 3 z8i7 
D T817 

Di13,K((no)/(n*n+-0)=d ost. 
zinins*(idtz)-D=DIED 6LV 

vms*((id*Id)/13)-(n*n+t)/(n*n)=9 8Li7 
(-r+kivz)hiv=kmv OT Z.L17 

SVOT VaLT/S0 SOldIl ZT*£ NOIS'tlgA Ntql1?:10d ESO 



053 FORTRAN VERSION 3.12 05/17/74 1045 

492 SUBROUTINE BESSEL(Z,V,AI) 
493 C 
494 C BESSEL CALCULATES BESSEL FUNCTIONS FOR THE GOLDSTEIN 
495 TIP LOSS MODEL 
496 C 
497 S=0.0 
498 AK=0.0 
499 C= 1. 
500 DO 30 K=1,10 
501 B=(.25*Z*Z)**AK 
502 D=V+AK 
503 P=1. 
504 5 TK=D-1. 
505 IF(TK.LE.0.0) GO TO 40 
506 P=D*TK*P 
507 D=D-2. 
508 GO TO 5 
509 40 E=P 
510 S=B/(C*E) + S 
511 AK=AK+1. 
512 C=AK*C 
513 30 CONTINUE 
514 AI=((.5*Z)**V)*S 
515 RETURN 
516 END 



0S3 FORTRAN VERSION 3.12 05/17/74 1045 

517 SU8ROUTINE NACA00(ALPHA,CL,CD) 
518 C 
519 C NACA - DETERMINES THE COEFFICIENTS OF LIFT AND DRAG 
520 C AT A GIVEN ANGLE OF ATTACK, ALPHA; FOR A NACA 0012 AIRFOIL. 
521 C THE EQUATIONS WERE OBTAINED BY A ORTHOGNAL POLYNOMIAL 
522 C CURVEFIT OF NACA DATA PUBLISHED IN NACA REPORT NO. 669,PAGE 529. 
523 C 
524 A0=5.73 
525 A2=7.*A0 
526 SDO=0.0058 
527 SD1-0.0006 
528 SD2=.130 
529 SD3=0.0168 
530 SD4=0.0006 
531 SD5=12570. 
532 AMAX=0.218 
533 A=ALPHA 
534 IF(A.GT.AMAX) GO TO 24 
535 CL=A0*A 
536 CD=SD0+(SD1+A)+(SD2*A*A) 
537 GO TO 25 
538 CL=(AO*A)-(A2*(A-AMAX)**2) 
539 IF(CL.GE.0.0) GO TO 61 
540 CL=0.0 
541 CD=SD3+SD4*(A-AMAX)**2 +SD5*(A-AMAX)**4 
542 IF(CD.LE.1.0) GO TO 25 
543 CD=1.0 
544 25 RETURN 
545 END 



053 FORTRAN VERSION 3.12 05/17/74 1045 

546 SUBROUTINE NACA44 (ALPHA,CL,CD) 
547 C 
548 C NACA - DETERMINES THE COEFFICIENTS OF LIFT AND DRAG 
549 C AT A GIVEN ANGLE OF ATTACK, ALFHA; FOR A NACA 4418 AIRFOIL. 
550 C THE EQUATIONS WERE OBTAINED BY A ORTHOGNAL POLYNOMIAL 
551 C CURVEFIT OF NACA DATA PUBLISHED IN NACA REPORT NO. 824, PAGE 401. 
552 C 
553 ALP=ALPHA*180./3.141593 
554 IF(ALP.GE.8.0) GO TO 20 
555 CL=0.099375*ALP + 0.3975 
556 IF(ALF.6G.+2.0) GO TO 10 
557 CD=0.00001644&ALP + 0.000028188623*ALP**2 - 0.000000704*ALP**3 
558 1+0.00661 
559 GO TO 100 
660 10 CD=0.0001695356*ALP + 0.00002732*ALP**2 + 0.0000023229*ALP**3 
661 1+ 0.00629752 
562 GO TO 100 
563 20 IF(ALP.GE.12.0) GO TO 30 
564 CL= 0.0731*ALP + 0.6078 
565 GO TO 10 
566 30 IF(ALP. GE.15.5) GO TO 50 
567 CL= 0.214377*ALP - 0.00738*ALP**2 - 0.0248 
568 GO TO 10 
569 50 IF(ALP.GE,16.0) GO TO 60 
570 CL= -0.11*ALP + 3.23 
571 GO TO 10 
572 60 CL= -0.029*ALP +1.934 
573 CD=+0.0131686686494*ALF - 0.1851985 
574 100 RETURN 
575 END 



NO ERRORS FOR NACAXX 
LENGTH OF SUBPROGRAM. 00026 

0S3 FORTRAN VERSION 3.12 05/17/74 1045 

576 SUBROUTINE NACAXX(ALPHA,CL,CD) 
577 C 
578 C NACAXX IS AN EMPTY SUBROUTINE FOR USE FOR A PROFILE 
579 C NOT PREVIOUSLY STORED. ONE MUST INSERT CURVE FIT EQUATICNS 
580 C FOR SCCTIONAL LIFT AND DRAG COEFFICIENTS AS A FUNCTION OF 

581 C ANGLE OF ATTACK IN DEGREES. 
582 C 
583 ALP=ALPHA*188./3.141593 
584 C ADD CURVE FIT PROGRAM FOR CL AND CD 
585 RETURN 
597 END 



II xiaNadav 





Since vorticity is conserved, the circulation in the wake must be equal to the circulation 

"generated" by the blades 

Hence 

'total = ds 

Using a circular path 

THE USE OF THE "F" FACTORS 

"total = 

2n 
{2a1rf2}rd0 

wake 
tangent 

velocity 

For an infinite number of blades a' # a' (0), i.e., a' is constant. 

FtotalB 47r a'r0 

1 

For finite blades a' is a function of 0, increasing near the blades and decreasing in between. 

Hence, the circulation F is a function of the circulation calculated above 

4nrF a'rS2 
F 

total = per blade 

At this same time, from Kutta-Joukowski 

Frft = CL W 
2 
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NOW rtotal included the drag generated circulation the ratio of rtotal to FL is 

rT 
CL sin(I) 

Since d-C)x 
= 

(ixd) 

= 
pcVxfdr 

, 
dFx = 

pW2 cCxdr 

Combining 

Cx 47trF airS2 ID cos (I) 

CL sin dp Bc CLW W 1+a' 

since a 
Bc 

1 aCx 

1+ a' 8F sirul) cos (I) 

Now thrust is determined by 

dTmomentum dTblade 
element 

pVco (1 a)2a\T,27urdr = 
-B 

pW 2 C 
y 

c dr 

Consider "a" to be localized at the rotor disk also, then 



(1 aF)aF = 
aCY 

8sin2 (1) 

2S = F 
VF2 

+ 4SF (1 F) 

a= 2(S+F2) 
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2 
a.' S (1. - a)2 






