APPLIED
AERODYNAMICS
Of

WIND POWER
MACHINES

s N Robert E. Wilson And Peter B. S. Lissaman

Supported by the National Science Foundation,
, Research Applied to National Needs (RANN)
O regon Under Grant No. GI-418340

State .
University
\_ Y,

MAY 1974




APPLIED AERODYNAMICS
OF

WIND POWER MACHINES

by
Robert E. Wilson

Oregon State University
Corvallis, Oregon 97331

and

Peter B. S. Lissaman
Aerovironment, Inc.
Pasadena, California

July, 1974



TABLE OF CONTENTS

page

CHAPTER I, INTRODUCTION ..ottt eeeecectteceeeesreesesreesessees sesnsesenseesssesessessenseees 1
Role of Aerodynamics in Wind POWET .......ccccciviivnnirenienenrenenneninnesssesessessesenens 2
Cross=WiNd=AXIS MACKINES ....ccoeeeiree e eeeee et eeeeee s eeeeeeeeeseseeeaeeeeeaeessesenneesessessanne 3
SAVOTIUS ROLOT «eeeeieieettettte et e taeaeeeeeeeeeeeeeeeeeeeeeeeeeaeeereaeaeeeeeeeesaranes 3

MAATAS ROTOT woeeeeieiieeieieeeeeeeeeeeeee ettt ettt eee e eeeeeeeeeeeeeeeeeeeeeseease s nnnnnnens 4

DIATTIEUS ROTOT oeeveieieiiieieeeeeeeteeeeeet e eeeereeeeeeseteseteteeeeeeeteeeeeteesesesenesesenanen 5

TWINA = AXIS MACHINES 1oiiiiiiiiiei ettt erer e eeeese e eses e e e esenseseseseaesensnsnasensnsnnnes 6
DUCEEA ROLOT oo ettt eeeeee vt eeeeteeceesre et eeenseeeenneeee e eeaeanneesneeeeeeaneeeeenn 6
Smith-Putnam Design ......cccoeceeveeeveenncnne feeeere ereesreesresseeneeeseententeeseerenneeraeneen 7
Circulation-Controlled ROOT ....ueeeeeeeeeeeeceeieieeereeeeeeeeneressesserererereessaseeasasases 8

CHAPTER 2, TRANSLATING WIND POWER MACHINES ......coooievriireenreireeneeeneeenens 11
Drag Translators .......ccccceevvevevencnnnnnne ettt et er et sr e e e et erese e resr e e e enaeneere e 11
Lifting Translators .......cceceevvereeereneeineineereneeneseeesesrensereresseseeneeseseeesenesrensesessenseseseenes 12
CHAPTER 3, WIND AXIS ROTORS; GENERAL MOMENTUM THEORY .................. 17
Rankine-Froude TREOTY ......ccceevirirrnirreniiiii sttt sreesreeesrenne e e e eneeseenneses 17

EATect 0f Wake ROTALION .iiiviiiieeeiiieeieeeeeee ettt e eee ettt ee e e e e eenesesesesesenn e s ennnmnnnns 20
Simple Model of Multiple FIOW States .........cccovviininnininiinincne, 25
DUCLEA ACLUALOTS wevveeerieeeererreeeeeeeeasaaeeeeeaaseeeeesseeesgessessarostesesseesseenannsnseeeeesananeseneeeses 34
CHAPTER 4, WIND AXIS ROTORS; VORTEX/STRIP THEORY .....cccoeoeveririnrecneennn 39
Vortex Representation of the Wake ..ot e, 39
ANNUluS FIOW EQUALIONS ...veeveeieeereeeneereeereninieeseseesinssesseeesssaeseessesssssessneesessesssssssens 44

TIP LOSS MOGELS ...eveeereeerecniieeneiiiiniree st s er s sres st sre e sesrens 49

The Optimum Rotor; Glauert ........ccovvvvieiiinininiie e 54
VOIEEX TREOTY .veveveeierieeeeeereeereeseereeseeeeeeseseneseeneseserensenes et s s nesrse st ensassrss s snse s sanens 59
CHAPTER 5, CROSS-WIND AXIS MACHINES .....cccociiirminniirneneeerneaneeenseeeseessesees 61
Vortex Modeling of the Wake .........cccoceviiiniiniinininnnnnnn. et eere et e ——————eeaeaanan——as 61
DIATTIEUIS ROLOT nvvveeeeeieeeeeeereeeeeseesasseseeeseeseanmeeeeeeeeeeeeesaneneeeaeeeseeaant eeensmneesesananmeeeeesaananns 64

The Circular Rotor ....... feeseseeerenenanenananetetete et et et e ta et tatatete ettt ettt etat et aatateteeetensanananannn 69

CHAPTER 6, FORCES AND MOMENTS DUE TO VERTICAL WIND GRADIENT ... 73

TN LOAUCTION veieeeeeeeereeerereeeeaaeee e aeseseaeressseeeseeeessssssnsasassssstesesssesseseasensssssnsansssseessnsnsnareres 73
The Effects of Vertical WiInd Gradient «....coccve e eeeeeeeieeeeee e ceeesreesenreeseessrsneesseesennns 74
Approximate RElAtions ........cccceeeerrereriiiniinii e s sssssssssssssessssessesasees 79



Table of Contents (cont'd.) page

REFERENCES  ..oooeor e vreeene s easseaasens 85
QYMBOLS. oo oo e ses e e 87
APPENDIX I, PROGRAM OPERATION INSTRUCTIONS ...cccucuvueueuuauaesaasaeasssssssssmmssnsen 89

APPENDIX II, USE OF THE “F” FACTORS ...ooviiiiiininiiines 107



1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
23
24

3.1
32
3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

43
4.4
45

LIST OF FIGURES

Savonius Rotor ......cceveevennieeiine i
Magnus Effect ........ccooeviiiiiiiiiii,
Darrieus ROLOT ....covevveiviceieecie e
Enfield-Andreau Ducted Rotor ............cc.e.
Smith-Putnam Wind Turbine .............ccoceee.

....................... fasaseaseeaseaseatesasteataneansnannan

............................................................

Typical Performance of Wind Power Machines ...,

Translating Drag Device ........ccccooeviiieniiniennne

Translating Airfoil ...,

Power From a Translating Airfoil vs Lift-Drag Ratio .........ccccocviiniininiiiiiinns

Translating Airfoil with Relative Wind ........

One-Dimensional Flow Past a Wind Turbine
Streamtube GEOMELIY .....ccceeveeveeeeiiniiiiniinennnn
Effect of Tip Speed Ratio on the Induced

Velocities for Flow with an Irrotational Wake .......oovevivivieiiiiiiee e

Maximum Power Coefficient vs Tip Speed Ratio

for a Rotor with a Rankine Vortex Wake
Propeller Brake State ..........ccooovvieviiniiniiinnn
Rotor Operation Modes .........cccceeviiiiinininenn
Blades Force for Various Modes ..................

Blade Element Coordinates...........ccoeeeeeeeeerennn

............................................................

............................................................

............................................................

Blade Element States for Various Blade Pitch Angles .........cccccooeviiniinininiiinicnninnn

Ducted Windmill Geometry ...........cocciiiinins

ACTUALOT DISC ittt

Vortex Lattice System for a Multi-Bladed Rotor

(Only Two Blades Are Shown) ...............

Idealization of Vortex System of a Two-Bladed Rotor .........ccc.coeceviiiiiiiiiiniiniiis

Rotor Blade Element............cccooeveniiiiiiinninins
Velocity Diagram for a Rotor Blade Element

...........................................................

17
21

24

25
26
28
29
30
32
36

40

41
43
45
45



List of Figures (cont'd.)

4.6
4.7

4.8

4.9

5.1
52
53
54

6.1
6.2

6.3

Working State 0f @ ROTOT ....c.cocvviiiiiiiininiii s

Calculated Performance of the Smith-Putnam Wind Turbine .......cccevvvvvirvvrreiinncnnn

Power Output Versus Wind Speed for the Smith-Putnam
Wind Turbine By = 0° .o

Velocity Diagram ......

................................................................................................

Vortex Shedding of Cross-Wind AXis ACHUALOL .....coovvveiiiiniiiiiienieenessieaniesse s

Vortex System of Single Bladed Crosswind Axis Actuator ............cceeivieiiriinennnn,

Flow System for a Crosswind-Axis Turbine ...,

Troposkien, Circle and Caternary of Equal Length ...

ROLOF 1N 8 WINA GTAGIENT «1vvvvveeereeeeeiieieeeieerireeesserrsarsesssassrsesssssssssssssssssssssssssssssssesns

Blade Velocity DIagraml ...coucvecereeerinieriniiiniiin i st seses

Percent Reduction In Power Output Due

To Wind Gradient

...............................................................................................

48
52

53

55
62
63

65
70

75
76

84



4.1
42
4.3

6.1

Flow Conditions for

LIST OF TABLES

the Optimum Actuator Disk ........ccccevirviieiniiinieciiniinci,

C, vs X for the Optimum Actuator DisK ........cooeeieiiiiiniiiiii e

Blade Parameters for the Optimum Actuator DisK ........c.cocoovvviiiiiiniiniiiiiiniiiiiiie

Trigonometric Sums



APPLIED AERODYNAMICS OF WIND MACHINES

CHAPTER 1

INTRODUCTION

Recent interest in wind machines has resulted in the reinvention and
analysis of many of the wind power machines developed over the past centuries.
Because of the considerable time period since the last large scale interest
in this country, which occurred over twenty-five years ago (1) a considerable
amount of information that was published is out of print or not generally
available. An excellent bibliography of the work published prior to 1945 was
collected by the War Production Board in a report issued by New York Univer-
sity (2). Golding's work (3) published in 1955 also contains an extensive
bibliography and covers the work done in England in the 1950's. It is the
purpose ot this paper to review the aerodynamics of various types of wind
power machines and to indicate advantages and disadvantages of various schemes
for obtaining power from the wind.

The advent of the digital computer makes the task of preparing general
performance plots for wind machines quite easy. Simple, one-dimensional
models for various power producing machines are given along with their per-
formance characteristics and presented as a function of their elementary aero-
dynamic and kinematic characteristics. Propeller type wind turbine theory is
reviewed to level of strip theory including both induced axial and tangential
velocities. It 1s intended that this publication be of use in rapid eval-
uation and comparative analysis of the aerodynamic performance of wind

power machines,




1.1 Role of Aerodynamics in Wind Power

The success of wind power as an alternate energy sources is obviously a
direct function of the econoﬁics of production of wind power machines. In
this regard, the role of improved power output through the development of
better aerodynamic performance offers some potential return, however, the
focus is on the cost of the entire system of which, the air-to-mechanical-
energy transducer is but one part. The technology and methodology used to
develop present day fixed and rotating-wing aircraft appears to be adequate
to develop wind power,

One of the key areas associated with future development of wind power is
rotor dynamics. The interaction of inertial, elastic and aerodynamic forces
will have a direct bearing on the manufacture, life and operation of wind
power systems while at the same time have a minor effect on the power out-
put. Thus the aerodynamics of performance prediction, quasi-static in nature,
is deemed adequately developed while the subject of aeroelasticity remains to

be transferred from aircraft applications to wind power applications.
1.2 Wind Power Machines

Since 1920 there have been numerous attempts in designing feasible wind-
mills for large scale power generation in accordance with modern theories.
This section describes representative types of these designs.

It is convenient to classify wind-driven machines by the direction of
their axis of rotation relative to wind direction as follows:

1. Wind-Axis Machines; machines whose axis of rotation is parallel

to the direction of the wind.
2. Cross Wind-Axis Machines; machines whose axis or rotation is

perpendicular to the direction of the wind.



CROSS-WIND-AXIS MACHINES

SAVONIUS ROTOR

The Savonius Rotor in its most simplified form appears as a vertical
cylinder sliced in half from top to bottom; the two halves being displaced as
shown in Figure 1.1. It appears to work on the same principle as a cup ane-
mometer with the addition that wind can pass between the bent sheets. In
this manner torque is produced by the pressure difference between the concave
and convex surfaces of the half facing the wind and also by recirculation ef-
fects on the convex surface that comes backwards upwind. The Savonius design
was fairly efficient, reaching a maximum of around 31%, but it was very inef-
ficient with respect to the weight per unit power output since its construc-
tion results in all the area that is swept out being occupied by metal. A
Savonius rotor requires 30 times more surface for the same power as a conven-
tional rotor blade wind-turbine. Therefore it is only useful and economical

for small power requirements.
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Figure 1.1 Savonius Rotor




MADARAS ROTOR

The Madaras Rotor works on the principle of the Magnus effect. In essence it involves a
boundary layer control technique which attempts to suppress boundary layer formation by
reduction of the relative velocity between the fluid and the solid boundary. The simplest way to
achieve the Magnus effect involves the rotating of a cylinder. Figure 1.2 shows the flow pattern
which exists about a rotating cylinder placed in a stream at a right angle to the flow. On the
upper half of the cylinder surface, when the flow and the cylinder are moving in the same
direction, separation is completely eliminated. On the lower side separation is only partly
developed. Thus circulation is induced causing a lift force perpendicular to the flow and the axis

of the cylinder to be produced.

o
0

|
/

Figure 1.2 Magnus Effect

Madaras proposed to construct a circular track around which rotating cylinders, mounted
vertically on flat-cars, would move. Each cylinder was to have been 90 feet high, 18 feet in
diameter, and driven by an electric motor. The Magnus effect would propel the cars around the
track and drive generators connected to the car axles. However the system’s poor aerodynamic
design, mechanical losses. and electrical losses. coupled with its unsuitability for use on

mountain top locations, resulted in very little being done with this design. A single full-sized



cylinder was built in Burlington, New Jersey for testing but no further development has been

done since.

DARRIEUS ROTOR

Georges Darrieus of Paris filed a United States patent in 1926 for a vertical axis rotor

sketched in Figure 1.3 below.

_ Figure 1.3 Darrieus Rotor

The Darrieus Rotor has recently been investigated by South & Rangi (20) of the National
Research Council of Canada in Ottawa. The Darrieus rotor has performance near that of a
propeller-type rotor and requires power input for starting. The simplicity of design and
associated potential for low cost production make it a promising candidate for economical power
production. The ability to scale the Darrieus type rotor to higher levels of power production, 100
kw or more, remains uncertain. To date the largest Darrieus rotors built are less than 20 feet in

diameter.



WIND-AXIS MACHINES

DUCTED ROTOR

In 1954 the British built an experimental windmill with two hollow airplane-type blades
as shown in Figure 1.4. Unlike conventional machines it has no coupling between the propeller
and the generator. As the blades are turned by the wind, centrifugal force pulls air from the
hollow tower through the blade tips. At the same time the pressure difference between the tip of
the rotor and the blade pedestal also draws up air through the semi-vacuum created in the 100
foot high tower. As air flows through the tower it passes through a turbine that drives a
generator. The blade was 80 feet in diaﬁleter and is capable of producing 100 kilowatts in a 35
mph wind at 95 rpm.

AlR VENT

PROPELLER

AIR VENT

AN

TURSINE

— =— AR INTAKES
GENERATOR

Figure 1.4 Enfield-Andreau Ducted Rotor

In order to maintain constant rotor speed hydraulic motors were used to vary the blade

pitch and were effective at wind speeds of 30 to 60 mph. The blades are designed so that they



can flap under wind pressure of heavy gusts. The motion of the rotor to face into the wind is
aided and controlled by a power operated system. The main advantage of this system is that the

power generating equipment is not supported aloft.

SMITH-PUTNAM DESIGN

The Smith-Putnam windmill built at Grandpa’s Knob in Vermont was the largest ever
constructed. The rotor diameter was 175 feet and consisted of two stainless steel blades using
NACA 4418 airfoil sections. The rotor and generator weighed about 250 tons and were
supported by a 100 foot tower.

The pitch control was automatic, keeping the blades at a constant speed of 28.7 rpm at
wind velocities of 18 mph and above. As the wind velocity increased, the blades began to
feather by turning edgewise. The blades were designed with an ability to cone up to 20° to guard
against sudden gusts and still maintain a reasonably constant speed. The coning was itself
damped by oil-filled cylinders. The power plant was designed to withstand wind up to 120 mph
and 100 mph with six inches of ice on the leading edge. The wind turbine was intended to
generate 1,000 kilowatts.

The turbine, shown in Figure 1.5, was erected in 1941 and operated as a test unit until
February 1943 when the 24 inch main bearing failed and a replacement could not be secured for
two years. In 1945 one of the blades flew off and ended experimentation with this design.

In spite of the structural failure of the blade, the Smith-Putnam design illustrated the

possibilities of electrical power generation by large scale wind turbines.



Figure 1.5 Smith-Putnam Wind Turbine

CIRCULATION-CONTROLLED ROTOR

The concept of the Circulation-Controlled Rotor Wind Turbine is quite similar to that of
the Madaras Rotor and the Flettner Rotor of the 1920’s. Instead of rotating the cylindrical blades
of the rotor, lift is generated by blowing sheets of air tangentially around the upper surfaces of
the blades from small slots. This principle, briefly, is a boundary layer control technique to
delay flow separation. Blowing re-energizes the low energy boundary layer of the upper surface
of the cylinder thereby moving the point of separation further back on the cylinder.
Consequently, the pressure drag is reduced but there is an accompanying increase in viscous
drag. At the same time circulation is induced by blowing and there is an increase in suction on

the upper surface and a decrease in suction on the lower surface, all of which generate lift.



This design possesses a number of advantages. First, at zero lift the cylinder is
insensitive to gusts, therefore the rotor would not tend to speed up with sudden gusts. Second,
no flapping or coning is needed because the blade can be mounted rigidly to the hub without the
difficulties of a conventional propeller blade that was solidly fastened. The large moment of
inertia of a cylindrical cross-section of this type of blade causes it to be very stiff. The spanwise
constant lift coefficient is achieved by adjusting the location of the slot, thereby foregoing
complicated pitch controls. This design provides for easy construction, control, and a very rigid
structure to cope with its operating environment.

An analytical investigation of this design was made at Oregon State University and it was
found that at high-tip speed ratios the compressor power to drive the jet was greater than power
output from the rotor, while at low-tip speed ratios the required rotor solidity (rotor projected
area divided by. the disk area) was large enough to offset the structural simplicity of a circular
rotor.

Figure 1.6 on the following page gives a performance comparison of the various types of

rotors that have been constructed.
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CHAPTER 2

TRANSLATING WIND POWER MACHINES

2.1  DRAG TRANSLATORS

Perhaps the most simple type of wind power machine is the device that loves in a straight
line under action of the wind.
Historically, wind-driven translating devices have been used for propulsion rather than

power extraction. Analysis of translating lift-driven and drag-driven devices can be illustrative

in examining various rotary machines since the translation can be considered as an instantaneous

blade element of rotating machine. First, consider the machine to be driven by drag. Figure 2.1

illustrates the action of the elementary drag device.

V., D
— —

Figure 2.1 Translating Drag Device

For such a device the power extracted, P, is the product of the drag and the translation velocity.

The drag device sees a relative velocity V. - v so that the power is expressed by
P=Dv=(1/2)p(V, -v)'CpSv @2-1)

11



wind. At speeds below the wind velocity, the power output of a translator is seen to vary linearly
with the translation velocity. In contrast the force produced by a translator is relatively
independent of translator velocity at low speeds. The large speeds required for the translator to
achieve high power extraction rates are the chief disadvantage as large speeds mean extensive
capital investment in machines and land. Other disadvantages of translators are proximity to the

ground and sensitivity to changes in wind direction.

16



CHAPTER 3

WIND AXIS ROTORS; GENERAL MOMENTUM THEORY

Now let us turn our attention to wind turbines. The propeller type windmill or wind
turbine remains today, as in 1940 (1), the most efficient machine and the leading candidate for
large scale wind power production. As a first step we will consider a one-dimensional analysis
of the output of a wind turbine and then proceed to a more detailed approach linking blade

geometry to power output.
3.1 RANKINE-FROUDE THEORY

Starting with the axial momentum theory originated by Rankine (4) and W. and R. E.
Froude (5,6) consider flow past a wind turbine as shown below. The free stream wind is Vo
which is slowed by a wind device. Applying continuity, momentum, and energy to the flow we
may determine the thrust and power if the flow is assumed to be entirely axial with no rotational

motion.

Streamline
_.__’____-——/ -\ »

¢. S CHR bl I S}

Vo

Figure 3.1 One-Dimensional Flow Past a Wind Turbine
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Two expressions for the thrust may be obtained. First, from the momentum theorem
T=m(V, -u;)=pAu(V, —u,) (3-1)
Second from consideration of the pressure drop caused by the wind machine
T=AAp , where Ap=p —p~ (3-2)

Now the Bernoulli Equation may be used between free stream and the upwind side of the turbine

and again between the downwind side of the turbine and the wake so that
A
szg(vj —u) (3-3)

together with the momentum expression we obtain

_Voo +u,

. (3-4)

u

i.e., the velocity at the disc is the average of the initial and final velocities. If we denote
Ve —u = aVy, note that V., — u; = 2aV, , the final wake velocity change V., — uy, is twice the
velocity change at the disc. The thrust is not immediately of great importance; however, the

power is. From the first law of thermodynamics, assuming isothermal flow, with p; = pe

2 2
P:pAu{Y;_%}zﬂww+u1)<vw-u1)

or

18



P

.—m =4a(l-a)* (3-5)

which has a maximum when a=1/3

P
me 16 _ 503 (3-6)

1/2pAV] 27
Thus a maximum power is defined. The term (a) is known as the axial interference factor and is
a measure of the influence of the turbine on the air. The minimum final wake velocity is zero, so
asu; = Vy (1 - 2a), we obtain ap, = 1/2 .
When examining equation (3-6) it may be noted that the denominator is the kinetic
energy of the wind contained in an area equivalent to that swept out by the rotor. Equation (3-6),
however, does not represent the maximum efficiency since the mass flow rate through the disc is

not AV, but Au. Hence the efficiency, power output divided by power available is given by

——P—2 =4a(l-a) (3-7)

Au—=-
pALT

The maximum efficiency is 100% at a = 1/2 which yields a power coefficient of 0.5. The
efficiency at maximum power coefficient is 88.8%.

Further one-dimensional modeling can be accomplished with the additional consideration
of wake rotation. As the initial stream is not rotational, interaction with a rotating wind machine
will cause the wake to rotate. In the case of a propeller, the wake rotates in the direction of the
propeller, in the case of an energy extracting device (windmill), the wake rotates in the opposite

sense. If there is rotational kinetic energy in the wake in addition to translational kinetic energy,

19



then from thermodynamic considerations we may expect lower power extraction than in the case

of the wake having only translation.

The following simple example will relate wake rotational kinetic energy to rotor angular
velocity.
Initial Kinetic Energy = Eq
Power Extracted =P
Final Kinetic Energy = E; + Eg,
T R

Translation Rotation

From thermodynamics

as P = (torque) x (angular velocity), note that increased torque produces greater wake angular
momentum and thereby greater wake rotational kinetic energy, so, for a given amount of initial

energy ETl , the greatest power extraction will occur when ER2 is low which means high

angular velocity and low torque.
3.2  EFFECT OF WAKE ROTATION

Joukowski (7) considered the effect of wake rotation in the analysis of propellers.
Adopting his notation to the analysis of wind turbines, the effect of wake rotation on power
removal may be estimated. The wake flow model, if assumed to be irrotational, produces
unrealistic rotational velocities near the rotation axis, however the contribution of the regions of
high angular velocities may be subtracted out and a rotational core inserted yielding a simple

model which affords utility to the results in establishing bounds.

20



Using a streamtube analysis, equations can be written that express the relation between
the wake velocities, both axial and rotational, and the corresponding velocities at the rotor. In
addition, for certain special cases, an expression for the power coefficient can be obtained. The
main outcome of this approach is a measure of the effects of rotation on the relative values of the
induced velocities at the rotor and in the wake.

Figure 3.2 below illustrates the streamtube.

K\
|
\ ‘
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Rotor Wake

Figure 3.2 Streamtube geometry

The resulting equations are:

Continuity
urdr =u;r,dr (3-8)
Moment of Momentum
r‘o =10 (3-9)

21



where @ and o; are the rotor and wake angular velocities of the fluid. In addition, we may

obtain an energy equation,

Energy

%(ul - Ve )2 = 2 _ ‘11(’31r12 (3-10)

where Q is the angular velocity of the rotor. Finally an expression for the radial gradient in axial
velocity may be obtained.
22
(enth) o

These four equations may be used to obtain the relations between thrust, torque and flow in the
wake. Closure cannot be obtained and one needs specification of one of the variables, say o, in
order to obtain a solution. The particular forms of thé momentum equation used are Bernoulli’s
equation and Euler’s equation.

Several features of the flow may be noted.

(1)  The pressure varies across the wake due to the rotational velocity.

2 The rotor and wake axial velocities vary radially.

(3)  The angular velocity of the fluid, which is opposite the direction of rotation of the

rotor changes discontinuously at the rotor.

(4)  Fluid drag has been assumed to be zero.
Expressions for the torque and thrust for an annular element may also be obtained.

22



TORQUE
dQ = pur’ndA

THRUST

dT = p(Q +—(§] r’odA

From the expression for the wake radial velocity gradient, it may be seen that when o is
constant the wake axial velocity is constant.

Defining

We may obtain

a =E(1 (-al” J (-12)

4x2(b-a)
and

power _bz(l—a)2
%pVaA  b-a

@]
o
il

23
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Figure 3.3 Effect of Tip Speed Ratio on the Induced Velocities for Flow with an
Irrotational Wake.

Figure 3.3 above illustrates the variation of the ratio a/b as a function of a and X. It may
be observed that the axial velocity change at the disc is always approximately 1/2 the value in
wake for tip speed ratios above 2.

The power coefficient requires some modification since r*® = constant produces infinite
velocities near the axis. In lieu of an irrotational vortex wake, we may substitute a Rankine

vortex wake. Letting N =0/®ma, We obtain

2
Cp =b—(:)—:2—)[2Na + (1-N)b] (3-13)

24



The maximum power coefficient for a rotor with a Rankine vortex wake is shown below
in Figure 3.4. As would be expected the highest values of power coefficient occur at high tip

speed ratios where the torque and consequently the wake rotation are the least.
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Figure 3.4 Maximum Power Coefficient vs Tip Speed Ratio for a Rotor with a
Rankine Vortex Wake.

The flow model used to arrive at these results requires the flow to occur in annular, non-
interacting steam tubes. Goorjian (8) has recently criticized this flow model. In spite of the
difficulties associated with this model, it affords some insight into the effect of neglecting wake

rotation in blade element theories of wind turbines.
33 SIMPLE MODEL OF MULTIPLE FLOW STATES

In the previous analysis it has been tacitly assumed that the device is operating as a

draglike power extraction device, thatis 0 <a <1. Fora <0 it is quite simple to continue the
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analysis to show that the device will act as a propulsion producing thrust and addiﬁg energy to
the wake flow. This flow regime is typical of that type of a propeller.

A particularly interestihg case occurs for a > 1. This may be physically modeled by
considering a powered propeller with its pitch adjusted so that it induces a forward flow, that is a

propeller in the reverse thrust, or brake state. An idealized streamline pattern is shown below.

/

N\

T A S A A A

Figure 3.5 Propeller Brake State

Continuing the analysis using the same approach as in Section 3.1 we find in this case

that

Cp=-4a(l-a) o (3-14)
C, =L __4a(l-a) (3-15)
" YpAV:

Thus, all three cases can be written in the form

Cp =4a|l-a] (3-16)
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Figure 3.6 Rotor Operation Modes
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occurring at a = 1/3. It should be noted that the windmill state can still exist for 6 = 0; that is, for
the blade to be at zero angle relative to the plane of rotation.

As 0 now becomes increasingly negative, the rotor enters the propeller brake state, a > 1.
These states are sketched in Figure 3-7, which also illustrate the sense of the force and torque on
the blade. We have avoided-discussing the flow regimes in the close vicinity of a = 1 since our
simplified model will break down here.

Thus, we can construct physical models of these states both by considering the flow at the
disc itself and by considering the flow in the wake.

In order to establish the possibility of the modes we must connect the force as represented
by wake momentum to that as represented by lifting forces on the blade elements themselves.
For our simple model we will consider, as an example, the wind axis rotor (propeller) and use
conventional blade element theory ignoring swirl terms and assuming the wake induced flow is
twice that at the disk itself. This model is sketched in Figure 3.8.

A

Wind
Direction

Ll

Direction
of Rotation

(1-0) Ve

Figure 3.8 Blade Element Coordinates

30



Assuming we are in the propeller or windmill state a < 1. By momentum theory, the

force on the annulus is given by
dT = pV2(1-a)2a - 2nrdr
and the local thrust coefficient is given by
Cr =4a(l-a)

Now considering flow at the blade element itself we get the circulation from

I' = WeCyr/2 and with Cp, = 2msin a,

I = prc[V,,(1-a)cos 6 — Qrsin 0]

Thus the force on the annulus is given by

dT = Qrl'dr
_xe

Cp = ; [(1-a)cos 6 — xsin 0]

where x is the local tip speed ratio rQ2/Ve,.

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

For the propeller-brake state a> 1, we get by momentum theory Cr = -4a(l - a), while

the blade force is given by the same result as previously. We can define a local solidity ¢ as ¢ =

cdr/nrdr. Thus we can write for all a

4nxc[(1—a)cos 0 — xsin 0]= 4a|1—a|
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The nature of solutions to this equation can most easily be seen from Figure 3.9. Note that for
0 <0 the simple powered thrusting propeller occurs, while for 6 < 0, the propeller brake mode
occurs. The angles in the intermediate range 8, > 6 > 0 exhibit three possible equilibrium states,

two windmill modes and one propeller brake mode.
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Figure 3.9 Blade Element States For Various Blade Pitch Angles.

It is of interest to note that the slope of the. blade force lines is a function of solidity and
tip speed ratio.

For the triple mode case, it appears that the point shown as B is unstable and that A and C
are both stable and occur depending upon how the state is approached. A simplified explanation
of why state B is unstable is as fol lows. Assume that at B, a, the induced flow is slightly

increased, now the drag-force on the disk (following 6 = constant) becomes much larger than
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that represented by the wake momentum, thus this wake momentum is further reduced, and the
system moves towards a = 1.0. On the other hand, A and C are stable according to these
arguments. Thus a working assumption in blade element theory is that no solutions with

1/2 <a<1 can occur.

It should be stressed that the above is an idealized model and that it inevitably involves
flow inconsistencies. For example, it can be seen that a model giving a < 1 on an annulus which
has inner and outer annuli with the value of a < 0.5 will somehow violate flow continuity.

We note that states of a > 0.5 should not occur in the major design range of a windmill.
However, in cases where it is necessary to prevent rotor over speed due to high incoming winds
or reduced shaft torque loads, it may be possible to use the confused flow of the propeller brake
state to dump energy. This is a method of speed control which is quite distinct from the normal
blade feather technique in which a is reduced. Note that this behavior is not the same as blade
stall, which occurs at the low X region of the characteristic.

We note here that the present analysis should be considered a small perturbation model,
thus should not be considered valid for a> 0.5. For example, for 0.5 <a <1 the simple one-
dimensional model developed here implies flow reversal in the far- wake and zero wake velocity
somewhere between the actuator disc and downstream infinity, a streamline configuration which
is physically unacceptable. Again the simple propeller brake analysis fnust be considered quite
inadequate in the vicinity of a =1.

No satisfactory theories exist for flow in this region, although quite extensive research
has been done on this problem in connection with helicopter rotor theory. In helicopter analysis
this region is that associated with a lifting déscending rotor where the anomalous states of the

parachute brake, the turbulent wake, and the vortex ring states occur [Shapiro, (16)].
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For most normal windmill operating modes a is less than 0.5; thus it is seldom necessary
to analyze conditions for a > 0.5. However, for off-design conditions spurious solutions with a >
0.5 may well occur. Rotor performance for the entire range of a is discussed by Wolkovitch
(17).

It is of interest fo note, as described by Wolkovitch, that many of the anomalies of flow
near a = 1.0 can be removed by assuming that the freestream flow is not precisely axial, but
yawed at some small angle to the rotor axis. The introduction of this additional degree of
freedom eliminates some of the singularities which occur for axial flow. A classical approach to
this problem is given by Lock, Bateman, and Townend (18).

A generalized performance curve of Cr versus a was constructed by Glauert (10) using
these concepts and using data from a series of free-running windmill tests. This curve was
shown in Figures 3.6 and 3.9. Since these were free running, these tests cotrespond to Cp = 0, or
in helicopter terminology, the autorotative state. It should be noted that in the autorotative state
one portion of the rotor is driving the remainder, thus in fact the rotor is subjected to non-

uniform a, and the value of axial perturbation given is the mean a for the disc.
34  DUCTED ACTUATORS

Shrouds or ducts are frequently used to increase the static thrust of powered propellers. It
has been well established that a duct can quite effectively reduce the slipstream contraction of a
thrusting propeller and can thus increase its thrust/power ratio, at least at zero forward speed. It
can be shown that, even ignoring skin friction, the effectiveness of the shroud reduces as the
forward speed is increased, and when duct drag and other duct pitching moments are taken into
account, the shrouded propeller is not effective technically. In calculations of ducted propeller

performance it is usual to assume that the flow leaves the duct exit at freestream static pressure;
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consequently, there is no further change in slipstream velocity and for purposes of calculation,
the duct exit area may be taken as the ultimate wake cross section. In the case of a static free
propeller, the ultimate slipstream is one half the propeller area. Thus any duct which causes the
final slipstream contraction to bé less than this will increase the thrust/power ratio of the system.
It is of interest to observe that even a cylindrical duct of the same cross section as the propeller
will increase the thrust, there will lave been no slipstream contraction. It should be noted that the
increased force is represented by a forward thrust on the duct, and a major part of this
contribution is the force on the leading edge and entry area of the duct due to the low pressures
there.

Because of the improvement in thrusting propeller performance due to a duct, it has
frequently been suggested that a ducted windmill might have superior performance. A
comprehensive analysis of ducted windmills is gi\}en 'y Lilley and Rainbird (19).

From a physical viewpoint, the effect of a duct will be to increase the wake expansion.
We have showed that for a free windmill the optimal wake cross section should be twice that of
the windmill disc. Thus, if it is possible to cause the optimal wake cross section to be larger than
this, white still keeping the wake axial induced flow at the optimal level of two thirds the free
stream velocity, then, based on rotor area, the power coefficient will exceed the free rotor limit
of 0.593. In effect the duct has caused more flow to be drawn through the rotor and increased its
power extraction capacity. A simple analysis of this follows, in which it is shown that unlike the
free rotor, a momentum type analysis cannot be made on this device without assumptions which
are quite hard to justify.

In Figure 3.10 we show a typical ducted windmill system. Assuming the mass flow

through the system is m, we can immediately write the power extracted as
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Figure 3.10 Ducted Windmill Geometry
P =mAH =mV2 2a(l-a) (3-24)
This force on the entire system (rotor and duct) may be written as

T =1V, 2a (3-25)

We note that these equations are not closed in that we do not have an expression for m. For free
actuator theory the remaining equation is readily obtained by stating that the force on the system
is the force on the actuator which is given by T = AAp = AAH where A is the actuator area. This
immediately gives the result m= pAV(l - a) for the free propeller case.

For our case, with the duct, it is still true that the propeller force is given by AAp, but the
duct force cannot be determined by simple momentum theory since the pressure field on the
outside of the duct is not known. By one-dimensional theory the pressure on the duct interior
can be calculated, except for the region very close to the leading edge. Thus, using momentum

theory one additional assumption is required.
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We can consider this to be satisfied by assuming the velocity at the duct exit, which is
shown as V(1 - b). If we assume, as is done in powered ducted propeller theory, that the
pressure at the duct exit is freestream static, then we get b = 2a and the mass flow can be

determined as m= A¢pVx(1 - 2 a). Then, basing the power coefficient on the duct exit area A,

we obtain

Cp =4a(l-a)(1-2a) (3-26)
This expression can be maximumized to give CPmax =(.385 ata=0.211. If we write power
coefficient in terms of rotor area, then we get

Cp=4a(l-a)(l-2a)A, /A (3-27)

and observe that if the duct to rotor area ratio exceed 1.54 then the power coefficient of the
ducted system, based on rotor area, will exceed that of the rotor alone. At this level of analysis
all performance characteristics are determined by the assumption of exit flow condition for the

duct. This can be expressed by writing the power coefficient (based on exit area) and the duct

exit pressure coefficient C; which give us

Cp =4a(l-a)(1-D) (3-28)
Cp =—(2a-b)(2-2a-b) (3-29)

It will be seen that, assuming the exit pressure is lower than freestream static, which must

be the case, gives wake expansion downstream of the duct with a higher mass flow and higher

37



power coefficient. In studying Lilley and Rainbird’s paper it must be noted the performance is
plotted in terms of the assumed duct exit pressure.

As described in the previous sections, it is possible in principle to compute the wake
shape by potential flow techniques, assuming a contour, computing internal and external flows,
and ensuring pressure continuity on the wake bounding surface. Evidently the details of the duct
geometry must enter into this analysis. We note that the duct cannot be treated simply as a ring
wing in a uniform homoenergetic flow since the essential addition of the actuator disc implies a
wake of different energy, with the associated vortex tube surrounding the wake.

Thus ducted windmills cannot be analyzed by any simple method and a proper
performance prediction depends upon a modeling of the entire flow. It appears that assuming-
the exit pressure coefficient is a poor approximation; since the result is directly dependent on this
quantity which will vary notably for every duct rotor system, and even for a given system at

different rotor loadings.
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CHAPTER 4

WIND AXIS ROTORS: VORTEX/STRIP THEORY

4.1  VORTEX REPRESENTATION OF THE WAKE

The wake of a windmill system consists of a flow of different total head from the
mainstream. For an inviscid flow, the discontinuity in head may be represented by a sheet of
vorticity. The mode of generation of this vorticity, and its geometry, can be of great assistance in
developing models of the flow. In more advanced wake models we usually stipulate the wake
vorticity distribution and then use the Biot-Savart Law to calculate the induced flow of this
wake. It is then possible to compute the pressure and flow fields on the wake to determine
whether it is in equilibrium. Thus a proper solution of the inviscid wake must involve both the
kinematics and the dynamics of the flow. In other words the wake shape and strength must
generally be determined by an iterative process, where the initial geometry and strength is
assumed and the induced flow checked to assure the wake streamline and pressure fields are
consistent. A similar situation occurs in ordinary wing theory; however, the interactive nature of
the problem is usually removed by assuming the vortex wake leaves the wing parallel to the
freestream flow. This implies that there will be downwash flow through the wake, a
kinematically inconsistent situation. However, it is only in cases of very highly loaded wings
that it is necessary to account for wake deformation.

Analogous assumptions are used for the actuator disc, where it is assumed that the wake
vortex tube is parallel to the freestream flow.

If we consider the prototype actuator, a disc .which may arbitrarily be switched from zero

to infinite porosity, we can create a model of the vortex ring shedding process. Assume that the
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disc is oscillated forwards and backwards and is solid during the forward motion (against the
mainstream) and fully porous during the rearward motion. The disc will now shed a series of

ring vortices which will be convected downstream with the freestream as shown in Figure 4.1.

Figure 4.1 Actuator Disc

In the limit, if we assume a vortex tube of constant strength is developed, and using an
hypothesis of light loads, the vortex tube will have the same diameter as the actuator disc.

Standard methods are available to compute the induced flow of a semi-infinite vortex
tube at its end. We will not go into these here, except to state the solution gives a uniform
induced axial flow over the cross section, although the radial flows are infinite at the tube edge.
I f another vortex tube of appropriate strength were added to this system, then the singular radial
flows are removed and the axial flow becomes twice that at the end of a semi-infinite tube. This
is another way of demonstrating the result already obtained from the momentum analysis, that
the induced flow in the downstream wake is twice that at the disc.

It will be observed that this system has no tangential velocity in the wake and hence there
is no torque. For this to be an approximate model of a propeller type windmill, the tip speed

ratio must be large so that for a given power the torque is in fact low.
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The next refinement to add to this simple model is one which introduces torque.
Consistent with actuator disc theory, we can model this with a large number of radial vorticity
lines in the plane of the disc, representing a many-bladed system of constant blade circulation.

In order to satisfy Helmholtz’s Laws on the kinematics of vortex lines, we see that this implies a
central vortex of finite strength with distributed streamwise vorticity along the wake cylindef
(Figure 4.2).

A variant of this model is to assume that the actuator disc is an annulus. Then the surface

of the inner vortex tube consists of ring and spanwise vortex lines of similar geometry, connected

by radial vorticity at the disc itself.
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Figure 4.2 Vortex Lattice System for a Multi-Bladed Rotor (Only Two Blades Are Shown)

For a lightly loaded system in which the wake boundaries may be considered right
circular cylinders parallel to the mainstream, this is a fully self-consistent model with axial and
tangential perturbations entirely confined to this annular cylinder. In other words, the induced
flow of such a system does not affect other annuli, as can be seen by superimposing two circular

vortex tube systems. Another annulus of completely different induction could be located inside
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or outside this one without affecting the induced flows in the first. Thus, the induced flow
system of each annulus is a function only of the blade geometry in that annulus and the angle of
attack or chord of the blade in neighboring annuli can be changed without affecting adjacent
induced flows. This interesting result of annular independence is the basis of blade element
theory which assumes that annuli do not interact. We note that this is different from the situation
in wing theory, where changes in geometry at one spanwise station will- affect induced flows at
all other stations. It is apparent that it is the idealization of continuous streamwise vorticity on
the vortex wake tube which effectively isolates the induction of an annulus. Thus for non-
interactive blade element theory to be valid requires that the product of the number of blades and
the tip speed ratio should be large.

We note also that the concept of a continuous bounding vortex sheet composed of vortex
rings permits differences-in total head between the flows separated by the sheet. Thus it permits
the wake flow to be of reduced total head, as assumed in simple models.

If we now consider a more realistic rotor system having a finite number of blades and
rotating at a finite velocity a somewhat different situation occurs. Assuming that vortex
shedding occurs only at the root and tips and that the vortex lies parallel to the local flow, then
the wake vortex geometry becomes as sketched in Figure 4.3. The helix angle of the vortices is
directly related to the tip-speed ratio. |

We note that this finite bladed model contains somewhat similar structure to that of the
wake of Figure 4.2, where the ring and streamwise vortex systems could. be considered as
components of the helix system of Figure 4.3. We note also that a large tip-speed ratio, or a
large number of blades will cause the finite helix sys tern to be more densely packed, so that the

idealization of a continuous bounding vortex sheet becomes more realistic.
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Figure 4.3 Idealization of Vortex System of a Two-Bladed Rotor

However, examination of Figure 4.3 will illustrate that near each blade the flow and
vortex system is similar to that of a high aspect ratio wing. Consequently, a vortex of finite
strength cannot be shed from the tips, since this would imply infinite induced washes there.

Thus the local situation becomes quite similar to that of a yawing wing and a continuous sheet of
vorticity is shed from the trailing edge. Generally, this vorticity is concentrated near the tip so
that the idealization of a finite strength tip vortex may be quite adequate a short distance from the
blade. It will be noted that for the finite bladed model there is spanwise interaction in the sense
that the load on each spanwise section does influence neighboring sections so that blade element
theory must be considered an approximation for a rotor with few blades at low advance ratios.

An analysis for a two-bladed rotor system at very low advance ratio is given by
Kuchemann (21), where the rotor is modeled as a rolling high-aspect ratio wing.

The model in which the blades sheds a system of helical vortex sheets is generally termed
the Goldstein Model. This elegant model is more complicated than most and we will not discuss

it here.
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42  ANNULUS FLOW EQUATIONS

A frequently used and accurate method for performance calculations for propellers and
helicopter rotors is to assume that the flow through the rotor occurs in non-interacting circular
stream tubes. This method when used in conjunction with the induced velocities has been called
by a variety of names including modified blade element theory, blade element theory, vortex
theory and strip theory. The method, which can be seen to assume locally 2-D flow at each
radial station, proceeds as follows.

The element of a wind turbine rotor illustrated in Figure 4.4 is viewed from the tip
looking towards the axis of rotation in Figure 4.5. Here the relative wind, W, is shown in
relation to the local blade pitch angle 0 and the local angle of attack, o.. The plane of rotation is
in the x-direction and the y-direction is normal to the blade in the downwind direction.

From the diagram, the following trigonometric relations may be verified

oa=60-96 4-1)
l1-a V
tan ¢ = — 4-2
¢ l1+a' 1Q *+2)
C, =Cycos ¢+Cpsing (4-3)
C, =C,sin¢—Cpcosé (4-4)

where C; and Cp are the- sectional lift and drag coefficients based upon the local relative

velocity W and the local angle of attack a.
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Figure 4.4 Rotor Blade Element

Figure 4.5 Velocity Diagram for a Rotor Blade Element

45



A relation between the axial interference factor a and the forces developed on the blade
may be obtained by equating the axial force dT generated in an annular element of thickness dr
by momentum considerations to the axial force predicted from blade element aerodynamic

considerations. From momentum

dTy, = p(2nxdr)u (V, -u,) 4-5)
while for B blades each having local chord c,

dTy =Bc ¥ pW>C,dr (4-6)

Equating these two expressions and assuming that the local wake axial interference factor b = 2a,

one obtains

BceC
o 4-7)
l-a 8nrsin”¢

In a similar manner, the torque determined from angular momentum considerations is
equated to the torque developed from the blade element in an annular differential stream tube.

From the moment of momentum theorem one obtains
dQ = p(2mrdr)ur (22'Q2) (4-8)

where the angular velocity imparted to the slip stream has been assumed to be twice the angular

Velocity at the rotor disk. The blade-produced torque is

2
dQ =pBc WT C,dr (4-9) -
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Combining these relations

! BcC
8 . (4-10)
1+a" 4nrsin2¢

If suitable airfoil sectional performance data is available, then the local flow conditions at a
given radial station r may be determined by the following procedure:

Givenr, ¢ , Cp(a),. Cp(a), 6, Vo, Q

A. Guess a and a’ (a=a’ =0 is acceptable to start)

B. Calculate () (4-2)

C. Calculate o 4-1)

D. Calculate Cy, and Cp

E. Calculate Cx and Cy (4-3 and 4-4)

F. Calculate a 4-7)

G. Calculate a' (4-10)

H. Go back to step B and repeat

Once the above iteration converges the sectional flow properties are known and the local
contributions to torque and axial force may be integrated to determine the overall torque and
axial force of the rotor. Blade airfoil section changes, twist and blade taper may be
accommodated quite readily.

The expressions developed so far required some modifications and qualification. First, to
qualify the above procedure, note the flow patterns illustrated below in Figure 4-6. It may be
seen that recirculating flow may occur. Such a flow pattern is not consistent with the

assumptions leading to equations (4-7) and (4-10), therefore, the above analysis is not valid. A
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criterion for determining the onset of recirculating flow may be obtained from wake momentum
considerations. The velocity in the wake u; = V(1 - 2a), hence for a > % , recirculation can
occur. This consideration will be modified in the next section. A helicopter, in going from
vertical ascent to autorotational descent can pass through the various states illustrated in F igure

4-6. Glauert (10) used experimental results to quantify the turbulent windmill and vortex ring

states of a rotor.

(a) ' (b)

Figure 4.6 Working States of a Rotor: (a) propeller; (b) zero-thrust; (c) windmill;
(d) turbulent windmill; (e) vortex ring
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43  TIP LOSS MODELS

The previous analysis requires some modification because of the pattern of shed vorticity.
The flow at any radial position has been assumed to be two dimensional. Radial acceleration and
wake-induced flow at the tip can alter the assumed flow pattern. The effects of radial
acceleration can be neglected for most wind power machines; however, the wake effects cannot
be neglected. So-called tip losses have been treated in a variety of approaches, the simplest of
these being to reduce the maximum rotor radius to some fraction of the actual radius,
characteristically on the order of 97% of the actual radius. Prandtl (11) and Goldstein (12) have
analyzed flow about lightly-loaded propellers (negligible wake contraction) and developed
models for the reduction of circulation due to wake interaction at the tips. The result of Prandtl’s

and Goldstein’s approach is circulation-reduction factor F, such that

F=or (4-11)

where B is the number of blades, I is the circulation at a radial station r and I is the
corresponding circulation for a rotor with an infinite number of blades. The factor F is a function
of tip speed ratio, number of blades and radial position. Of the two models the Goldstein model
is the more accurate however, since Goldsfein’s flow model involves an infinite series of
modified Bessel functions, it is more difficult to use. Since there is little difference in results for
situations involving three or more blades, the Prandtl model which yields a simple solution can
be used.

The incorporation of the tip loss factor into equation for induced velocities proceeds as

follows.
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The physical meaning of the tip correction is virtually that the maximum change of axial
velocity, (Ve - u;) or 2aV., in the slipstream occurs only on the vortex sheets and the average
velocity change is only a fraction F of this velocity. Thus the velocity change 2aV., becomes
2aFV,, and in similar manner, the angular velocity change is written 2a’FQ. Equations (4-7) and

(4-10) then become

cC
it 4 (4-12)
I-a 8Fsin“¢
2 oCy (4-13)

l+a’ =8Fsin¢cos¢

where F is the Goldstein tip correction or the Prandtl tip correction factor and the quantity o is a

local solidity given by ¢ = Be . A further refinement of the analysis can be made in the axial
nr

flow velocity u through the rotor disk in equation (4-5) is assumed to vary in the same manner as
the wake velocity. The average flow velocity through the rotor is then given by u= V(1 - aF).

Equation (4-13) remains the same, however, equation (4-12) becomes a quadratic

(1-aF)aF = 8;’:5 ; (4-14)

The derivation of equations (4-13) and (4-14) is given in Appendix II.
The use of equation (4-14) in lieu of (4-12) yields slightly higher performance and
significant reduction in the number of iterations required for convergence. It may be noted that

the criteria for recirculating flow becomes aF > 4.
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The Goldstein tip correction for a heavily loaded rotor may be determined following the
method of Lock (13). Lock’s approach bases the calculation of F on the local value of ¢, so that
F=F (¢, r/R). The angle ¢ defines a local speed ratio via the relation 1 = cot'¢. The
corre.sponding tip speed ratio is ., = Rp/r and thus the Goldstein tip correction factor F =
F(u,10) can be determined. As a practical consideration it may be noted that at low tip speed

ratios the tip loss is appreciable over the entire blade. In such cases this approach ceases to be a

tip loss correction, instead being a dominant factor in the calculations. Prandtl’s F factor is given

by
2 4
F=—cos [exp (~f )] (4-15)
T
where
p_B R-r (4-16)
2 Rsin ¢

As the factor F has been derived for a frictionless rotor with optimum distribution of circulation
along the blade, the approximate nature of the previous analysis should be noted.

Figure 4-7 gives the calculated power coefficient of the Smith-Putnam Wind Turbine (1)
as a function of tip speed ratio. The Smith-Putnam turbine employed an NACA 4418 airfoil
which has discontinuously twisted 5° along a 65 foot length. The turbine diameter was 175 feet
with an 11'4” chord. The Goldstein tip correction was used to develop the curve.

The effect of pitch angle can be seen in Figure 4-7. Increased pitch reduces the
maximum power but can increase the power available at low tip speed ratios. Figure 4-7 also

can be used to illustrate some generalizations concerning wind machines. At low tip speed
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ratios, the power coefficient is strongly influenced by the maximum lift coefficient. The angle ¢
is large at low tip speed ratios and much of the rotor, particularly the inboard stations, can be
stalled when operating below the design speed. At tip speed ratios above the peak power
coefficient, the effect of drag becomes dominant. A high drag coefficient will result in a rapid
decrease in power with increasing angular velocity. Finally at some large tip speed ratio the net
power output will become zero. If the slope of the power curve at C, = 0 is negative, the rotor
operation at zero power output (feathered) will be stable, since for constant wind velocity,
decreased rotational speed will result in positive power output which in turn will return the rotor

to its original speed. The steeper the curve, the greater the stability.
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Figure 4.7 Calculated Performance of the Smith-Putnam Wind Turbine.
1) Opiten = 0°, equations (4-13) and (4-14)
2)  Opich = 5°, equations (4-12) and (4-13)
3) Opiten = 0°, equations (4-12) and (4-13)
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A plot of power coefficient versus tip speed ratio yields information concerning power
output, efficiency, and rotation speed for a given wind velocity. Another type of display that
illustrates rotor performance is a plot of power versus wind velocity. Retaining C; and X as our
variables, the power is directly proportional to Cp/X3 while velocity is given by 1/X. Figure 4.8

illustrates the Smith-Putnam wind turbine calculations shown in Figure 4-7.
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Figure 4.8 Power Output Versus Wind Speed For the Smith-Putnam Wind

Turbine 6, = 0°.
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Note that at constant RPM and pitch angle, the stall controls the maximum power output
and drag controls the starting velocity. Another point of considerable importance is the location
of maximum power coefficient. Operation near the point of maximum power coefficient will
give the greatest increase in power for a given increase in wind velocity and hence the greatest

sensitivity to wind speed fluctuations.
44  THE OPTIMUM ROTOR; GLAUERT

Glauert has developed a simple model for the optimum windmill. The approach used is
to treat the rotor as a rotating actuator disk (i.e., corresponds to a rotor with an infinite number of
blades) and set up an integral for the power. The power integral is made stationary subject to an
energy constraint; the results yielding the maximum power output for a given tip speed ratio.

The relation for the power coefficient is

P 8 X 1,3
Cp Em=;{7j‘o (l—a)ax dx (4"17)
2 <)

where

Since the integral for the power involves two dependent variables, another relation is required.

This is the energy equation

a'(l-a')x* =a(l-a) (4-18)
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Perhaps the most unique way of illustrating this relation is to consider the velocities at the rotor
plane. The flow is assumed to be uniform in annular streamtubes with no circumferential

variations. Under these conditions, two-dimensional flow may be assumed.

Wind Direction

0 Ve -

Piane of Rotation

Figure 4.9 Velocity Diagram

In .the absence of drag, the velocity induced at the rotor must be due to lift and hence
perpendicular to the relative velocity. Two expressions for tan ¢ may be developed under the

condition that the total induced velocity is normal to the relative velocity. These are

an § = (1-a)v, _a' 4-19)
(1+a')rQ av,
So that
a’(l+a’)x2 =a(1—a) (4-18)

55



The variational problem is now posed

P

With G(a, @/, x) =0=a'(l +a')x* —a(l - a)

The solution yields

so that

C, = J;XF(a,a', x)dx

a'x? =(1-a)(d4a-1)

(4-20)

4-21)

(4-22)

Hence, 1/3 = a > 1/4. The variation in a, a’, a'x%, and x are given in Table 4.1. Since high

speed rotors easily reach tip speed ratios of 7 or more, it can be seen that most of an ideal rotor

Table 4.1 Flow Conditions For The Optimum Actuator Disk

te, 2

a a' a'x X
25 © 0 0
27 2.375 .0584 0.157
29 0.812 1136 0.374
31 0.292 1656 0.753
33 0.031 2144 2.630
1/3 0 2222 ©
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will operate with a = 1/3 and the rotational velocity distributed in the form of an irrotational

2 2
Q V., Q . . .
vortex i.e. as X — o0, a'x* — (2/9) =-———(;; ———V 5= __th ——V >~ The power coefficient for various tip

speed ratios is given in Table 4.2. At low tip speed ratios the power coefficient is low because of
the large rotational kinetic energy in the wake. At large tip speed ratios, the power coefficient
approaches 0.593 and the wake rotation approaches zero. The variation of C, with tip speed ratio

is illustrated in Figure 1.6.

Table 4.2 C, vs X For The Optimum Actuator Disk

RO

V., Cp
0.5 288
1.0 416
1.5 480
2.0 512
2.5 532
5.0 570
7.5 582
10.0 593

Further information may be obtained from this model using the blade element theory. As
the quantities a and a' are known for each radial position, the relative velocity and the angle ¢
may be determined. Figure 4.5 may be used to illustrate the velocities and forces in relation to
the blade configuration. Of course, since we have assumed that the drag is zero, the only force

that acts on the blade is lift.
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The incremental thrust and torque acting on an annulus containing B blades each having

chord ¢ are given by

dT = —323 pW?C, cos ¢ dr

and

dQ = % tpW2C, sin ¢ dr

The momentum expressions yield (assuming b = 2a)
dT = 4npV2 (1-a)adr
dQ = 4nr’pV, Q (a - a)a’dr

So that

a’ BcCp cos ¢

1-a  8nrsin® )

a’  BcCpsing
1+a' 8nrsingcosd

(4-23)

(4-24)

(4-25)

(4-26)

(4-27)

(4-28)

Now a and a’ are known as a function of x so that the shape of the blades may be determined.

Table 4.3 gives the results. It may be noted that an optimum blade for a given X and constant Cp,

will have a chord that approaches a maximum at x = .7.
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Table 4.3 Blade Parameters For The Optimum Actuator Disk

BcQC,
¢ * LA
50 0.35 497
30 1.00 536
20 1.73 418
15 2.43 ‘ 329
10 3.73 228

7 5.39 161
5 7.60 116

45  VORTEX THEORY

The flow over real-rotors differs in many respects from the flow model used to describe
the optimum actuator disk. A frequently-used model involves the use of bound vortices to
represent lift. Following the concepts of vortex theory as applied to wings, each blade of the
rotor is modeled as a bound vortex line. This simple scheme enables the induced flow at each
section to be determined via the Biot-Savart Law. However, one may note that the induced flow
will vary. chordwise over the blade section. In order to fully-represent the flow, the blade should
be replace by a bound vortex sheet in lieu of a vortex line. Since most windmill rotors have very
low solidity, the chordwise variation in flow may be neglected without loss of accuracy.

In this scheme, the bound vorticity serves to produce the local lift on the blade while the
trailing vortex filaments induce velocities at each element of the blade. Several solutions for the
induced volocity at a blade element have been obtained by solving partial differential equations,

but the most straightforward method is a direct integration of the Biot-Savart Law. Now as
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straightforward as this method may appear, it requires as an input the knowledge of the trajectory
of the vortex filaments in the wake. Since the wake will consist of the superposition of a large
array of vortex filaments, each acting on each other, the vortex trajectory (or configuration)
cannot be established unless all the vortices are coupled. Now in Prandtl Lifting-Line Theory,
the wake is assumed to lie in the plane of the wing and although one can calculate physically
impossible velocities which flow thru the vortex sheet wake, the results of Prandtl’s theory gives
very acceptable answers. Just as the wake from a wing is a vortex sheet (which happens to roll
up a snort distance downstream of the wing), the wake shed by a propeller may also be
considered as a vortex sheet (which also rolls up in the wake). This approach may be likened to
that used in elementary strength of materials where one assumes a deformation geometry and
calculates forces — here we assume wake geometry and calculate induced velocities.

For an optimum rotor using vortex theory the Betz criteria (23) may be used. This
criteria requires the wake to move back as a rigid screw surface. The writings of Betz,
Theodoresen (24), Lerbs (25), and Weinig (26) cover analytical techniques required to define the

optimum propeller.
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CHAPTER 5
CROSS-WIND AXIS MACHINES

51  VORTEX MODELING OF THE WAKE

Continuing the approach discussed in Section 4.1, it is of interest to construct the vortex
system of a crosswind axis actuator, since this has not been discussed in the literature.

We note first that if we assume the device to be modeled simply as an oscillating actuator
disc of cross section as the device are shed and a wake System’ similar to that of the rotor actuator
disc develops. Again we see that this may be an acceptable model for a many-bladed high tip
speed ratio system.

To construct a somewhat more realistic model, consider a crosswind axis machine having
slender lifting blades, and for simplicity assume these do not move in a circular path about the
axis, but are constrained to follow a square path at constant velocity and at zero angle of attack
relative to the path. This model is shown in Figure 5.1. As a blade moves up the leeward sector,
it sheds a starting vortex and a trailing pair as shown, and finally sheds its bound vortex as it
assumes zero lift over the upper poﬁion of the path. On passage across the forward portion a
similar situation occurs. Thus the final wake system appears as shown in Figure 5.2. Note that
the crisscross system on the sides will converge to a simple ring type system; that is, the

streamwise vorticity component will cancel as the tip speed ratio and blade number is increased.
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Figure 5.1 Vortex Shedding of Cross-Wind Axis Actuator
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Figure 5.2 Vortex System of Single Bladed Crosswind Axis Actuator

It can be shown that the solution for the induction of an infinite vortex tube of arbitrary
cross section is the same as that of one of circular cross section, a uniform internal axial flow,
and zero external flow.

If we now consider the more realistic case of a crosswind axis system where the blades
rotate about a fixed axis, then the lift and consequently the shed trailing and starting vorticity is
continually changing. Adopting arguments similar to those used for the square path system and
assuming high advance ratios, we now obtain a wake vortex system as sketched in Figure 5.2.
This is importantly different from the previous case since there is internal spanwise vorticity
within the tube. It can easily be shown that this spanwise vorticity is linearly distributed across
the tube and that the induced internal axial flow is not uniform. Thus i;c appears that even an
ideal cross-axis machine cannot achieve the ideal power coefficient of a wind axis system, since

the induced axial flow is not uniform.
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52  DARRIEUS ROTOR

To analyze a Darrieus-type crosswind-axis device we adopt the standard approach of
wing theory, which is to express the forces on the system by a momentum analysis of the wake
as well as by an airfoil theory at the lifting surface itself. The expression for these forces
contains unknown induced flows. By equating the wake and wing forces one obtains sufficient
equations to determine the induced flows.

For the device considered we assume that each spanwise (parallel to the axis) station
behaves quasi-independently in the sense that the forces on the device at each station may be
equated to the wake forces. In general, these devices can experience a windwise as well as a
cross-wind force, so that the wake can be deflected to the side.

Consistent with vortex theory, we will assume the induced flows at the device are one
half their value in the wake. Thus we obtain that if the wake windwise perturbation is 2aV,
then at the device itself the incoming flow has velocity V(1 - a), giving the flow system

illustrated in Figure 5.3.

In order to simplify the analysis we shall adopt the following assumptions,

1. B=0
2. Cp=0
3. CL=2rnsin o
4. c<<R
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Figure 5.5 Flow System for a Crosswind-Axis Turbine
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Our results will then be limited to an inviscid analysis at high tip speed ratios where the
maximum angle of attack o is small. The low tip speed ratio performance requires numerical
analysis to model the nonlinear aerodynamics near stall. Using the above assumptions and

starting with the Kutta-Joukowski law, we can write

L=pWI = Y%pW2cC, (5-1)
so that
I'= % WC; =ncW sin o (5-2)

Since the force on the airfoil can be expressed as

ki
I
ho)
=
il
=

(5-3)
we obtain
F=prc|-V,V, sin?03—(V?2 sin 0+ V,V, sin 6 cos 0) 7] (5-4)

Now we can equate the force on the airfoil to the momentum lost in the streamtube which the
airfoil occupies. Let the streamtube be of width dx when the airfoil goes from angular position 0

to position 6 + dB. The width dx is related to dO by

dx =Rd6|sin 0 | (5-5)

The process will repeat itself every revolution so the time interval of our analysis shall be

one period which is 27/Q. Of this time period, the airfoil will spend a time increment of d6/Q in
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the front portion of the streamtube and another time increment of d6/Q in the rear portion of the

wake. Since the streamwise force contribution from equation (5-4) is seen to be symmetrical

with respect to the angles + 0 we may write the blade force equation for the time period 27/Q2 as

delade = 2pTCCVtVa S].Il2 9 “dg

Now the momentum equation yields the force in the streamtube as

2n

dF = pRdO[sin 0|(1—2)V,2V,a )

momentum

Equating these two forces under the assumption that V, = V(1 - a) and V; = RQ yields an

expression for the axial interference factor a for one blade

a=S R0l
2RV,
or for B blades
Bc RQ, .
a=20 RO g g
2R V,,

(5-6)

(5-7)

(>-8)

(5-9)

Now that a is defined, the blade force may be resolved into torque and radial components.

The torque is given by
Q = pncR V2 (1 - a)2 sin® 0

The average torque for a rotor with B blades is
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— 21, 4 BeX 3 (BeX)’ ]
(Q—IpnBcRV;]{% i R»-+32( = ] } (5-11)

and the corresponding sectional power coefficient is given by

(5-12)

This expression yields a maximum power coefficient of 0.554 when the quantity
BcX/2R = ayae = 0.401. Further refinements can be made with consideration of drag and

maximum angle of attack. The maximum angle of attack occurs approximately at the point

6 = /2 where

tan o =M= _—° (5-13)

When a. is set equal to a.max We may rearrange equation (5-13) to express the starting tip

speed ratio. Using oumax = 14° max we obtain

) 4
Xstart = Be (5-14)
1+2 —
R
so that a three-bladed rotor with a one foot chord and a 20 foot radius would have a starting tip

speed ratio of about 3.

Since this type of rotor will not operate at low tip speeds, the drag losses may be simple

approximated by assuming that the local velocity is W = RQ. The drag torque is then

68



— C 3
Qp = S pR2Q’BeR = -—2 pV? BeX (5-14)
2 Q
and the contribution to the power coefficient is
Bce
AC, =-Cp Y x? (5-15)

- At this point, a solidity may be defined as ¢ = Bc¢/2R, the ratio of blade circumference to disc

diameter. The power coefficient becomes

C —mox-L852x2 4 o3x3 (3E_Co (5-16)
P 3 4 (52

C
and it may be seen that C, =C, (O‘X, —?—j .
c

53  THE CIRCULAR ROTOR

At the high rotational speeds required for the Darrieus-type rotor, the inertial loads are
large and result in substantial bending loads in the blades. These bending loads may be removed
by deploying the blade in a shape similar to the caternary so that the loads are entirely tensile.
The required shape has been investigated by Blackwell (22) and given the name troposkien. The
curve is described by elliptic integrals and is approximated by a sine curve or parabola. The
effect on performance caused by bringing the blades closer to the axis of rotation is substantial
since both the rotational speed and the usable component of the lift are reduced. Figure 5.4

below illustrates the troposkien curve and the local angle y between the blade tangent and the

axis of rotation.
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Figure 5.4 Troposkien, Circle and Caternary of Equal Length

The analysis of the curved rotor proceeds in the same manner as in Section 5.2. If we

analyze a unit height of the rotor, the expression for a becomes

a=oXcos y|sin 6 (5-17)

where the product 6X may be taken as the solidity and tip speed ratio at the point R = Ryax since

this product is independent of R. The torque generated by a slice dz along the rotor axis is

((11_(22 = pnBcVO% cos y[%—% cXcosy+ %chzcs2 Y} (5-18)
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and the incremental power coefficient is

dC, _ dQ QO  4noX

dz  dz YpviA A

R cos y[%——%cXcosyﬁ%chz coszyJ (5-19)

The integration of equation (5-19) for an arbitrary geometry may be accomplished; one
simple case is the circular blade for which a maximum power coefficient of 0.536 occurs at
60X = apax = 0.461. The effects of drag and stall can be included in the above model by

development of a blade element theory similar to that developed for the wind-axis rotor.
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CHAPTER 6
FORCES AND MOMENTS DUE TO VERTICAL WIND GRADIENT

6.1 INTRODUCTION

In the analysis of rotors covered previously, the relative wind was assumed to be uniform
and parallel and to be perpendicular to the plane of rotation of the rotor. In reality, both flow
irregularities and rotor motion can occur. Real flows will be neither uniform, steady nor
unidirectional. Vertical wind gradient, gustiness and-wind turning with elevation all present
double-edged difficulties to the design and operation of wind turbines. First, the local flow
conditions must be known; secondly, techniques to predict the magnitude of the effects of the
flow variations must be adapted to wind machines. The lack of knowledge of local flow
conditions, particularly in regions of rough terrain represents a considerable barrier. While some
wind gradient data exists for flow over rough terrain, there is little or no data on turbulence
spectra and wind turning. Slade (13) has reported the presence of considerable wind turning in
the atmospheric surface layer over rough terrain. By contrast the knowledge of flow over flat
* terrain is much more complete.

Extensive studies have been made of wind structure in the atmospheric surface layer over
flat terrain. Monin and Obukhov (14) have developed a relation for the mean flow that
encompasses stable, neutral and unstable stratification. Their relation involved three parameters,
the surface friction velocity, the surface roughness and a stability parameter, the Monin-Obukhov
length. By contrast, the mean flow over rough terrain is frequently approximated by a power

law relation with height
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\Y n
=9
R

where the coefficient 7 is less than one. Because of the simplicity of equation (6-1), since it
requires fewer parameters, and the fact that the wind variation over a limited range (~ 100 to 200
feet) is required for wind turbines we shall use the above relation.

The departures from the flow studied previously have no first order effects on the turbine
mean output, however, periodic variations in torque, time dependent side forces and pitching
moments can occur. These forces and moments will effect the overall system dynamics and
hence both the design and operation of a wind turbine. In addition to the acrodynamic forces and
moments certain mechanical forces and moments are present. This section will deal only with
 the aerodynamic loads due to wind gradient.

Both rotor yaw and flapping can induce large forces and moments. Rotor yaw can be
treated using the analysis of Ribner (15), flapping moments and forces are included in the

program described in Appendix I.

6.2  THE EFFECTS OF VERTICAL WIND GRADIENT

A vertical wind gradient will induce forces and moments as illustrated in Figure 6-1. The
largest of these are the torque variation and the pitching moment. As would be expected the
magnitude of these moments is dependent upén scale, since it is the velocity difference between
the top and bottom of the rotor that is significant. Before proceeding further, it should be noted
the incremental forces on a blade element have been designated normal (n) and tangential (t) in
order to avoid confusion with the coordinates XYZ. Thus the (x,y) of Chapter 4 are now the (t,n)

coordinates.
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TORQUE

PITCHING MOMENT

Figure 6.1 Rotor in a Wind Gradient.

Figure 6.2 on the following page illustrates the blade velocity diagram. This velocity
diagram differs from previous illustrations in that the freestream velocity V. has been replaced
with the local wind velocity Vy.

For a blade in the upper half of the rotor disk, the axial velocity will be higher than for a
blade in the lower half disk. The increase in V., increases both the resultant velocity w and the
angle of attack o.. At high tip speed ratios it may be seen that the principle effect of increased
Yelocity (due to gradient or gust) will be an increased angle of attack. The variation in angle of
attack in turn will cause variations in the force dF; and dF, with the angle of rotation.

Expressions for the first and second order forces and moments can be generated from the steady-
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Figure 6.2 Blade Velocity Diagram

state performance aerodynamics in the following manner. The differential force on a rotor

element may be expressed in terms of a Taylor Series about the rotor hub so that

AZ? _

AZ+[dF, 02 +dF, u,,] (6-2)

dFt|Z =dFt|o +dF, u,

2
where dFtu = @, , dF, = 0 P;t and u= Yy
ou ou Vref

tuy

A similar expression may be obtained for dF,. These forces change from their hub values (Z =
0) due to the variation in wind velocity with elevation. The distance AZ = rsin 6;, where 0; refers

to the angle of rotation of the ith blade. Rewriting equation (6-2) in the form

AZ? _

dF, =T, + T,AZ+T, (6-3)
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and expressing dF, in the same manner

AZ?

dF, =Ny, +N;AZ+N, (6-4)

we obtain the following forces and moments by integrating over the blade and summing over B

blades, where B > 2.
TORQUE
B B
Q= [iTydr + [r*Tydr Z/swei + [P T,dr ) sin® ; (6-5)
i= ) i=1
0
PITCHING MOMENT

B B I,BN B
M, = [iNodr Y4in6; + [t*Nydr) sin”6; + J._z_z_dr?x(‘ 0 (6 -6)
Qi=1 i=1 i
unless B
is odd

The summation over B equally spaced blades has been evaluated and it may be noted that wind
gradient induces no first or second order yawing moment.

Table 6.1 on the next page gives the values of the summations for various numbers of
blades.

The terms Ny, N, T; and T, remain to be evaluated in order to determine the magnitude
of the forces and moments. As the method of differentiation is straightforward, let us indicate

the approach by evaluation of Ni.
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Table 6.1 Trigonometric Sums

B=2 B=3 B=4
- -
D sin® 6, 1 - cos2Qxt 3/2 2
i=1
L 3
> sin’®0; cos®, 0 = cos 30t 0
=1
L 3
Zsin3 0, 0 2 sin3Qt 0
i=1

AZ=Y pVIfcv[—a%{(uz +v2)(C, cosp+Cyy sin(l)}guZ—J AZ (6-7)

Z=0 Z=0

where v =rQ/V, and u = Vz(z)

. The- differentiation of Cy, requires some comment. As ¢ =f
R

+ a and P} remains constant

W_sz_LQE@:cL % (6-8)
ou do 0 du M pu

The final result is

.. C in’
N, = 4pVacv C, cosp+C, sm¢+m X AZ (6-9)
@ cos¢ - 0L |, '
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The variation in torque coefficient may be evaluated from the preceding analysis

2
2 42
+1, R°d VZW
Z=0 VR dz

dV
_____Az&_a_EACQ___ I, R dVw
Y pVRTR Vr dZ

B
Ysin®6,  (6-10)
z=0 )| =L

where the integrals I; and I, are evaluated as

1 R 5 3 o r 3c r
=L [ fo-cos? ooy sng s 2004, 2005 4o Ji-af (5] 2] @10

Rhub

and

X R Y
=" | [1+sin29)c, +C_sing-Cy sin¢](1+a')(1—a)(§] %d&] (6-12)

Rhub

Similar type integrals are obtained by the other forces and moments. As can be seen
from equations (6-11) and (6-12), considerable simplification can be made if the angle ¢ is small
and the value of Cp and ¢ are constant over the outer portions of the blades. In this case, closed

form approximations can be obtained.

6.3  APPROXIMATE RELATIONS

At high tip speed ratios sin¢ = ¢ and by neglecting drag it may be shown that the

following expressions may be obtained.
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PITCHING MOMENT

B 2
Z sin” ©; (6-13)

M ocXC R4V
y Lg (l—a) d A
70 =1 B

YpVEinR: 4 Ve dZ

TORQUE CHANGE

AQ ] (Rdvy Y’
Y pVenR’ H Vrdz

B 22
— W P (6-14)
z=0 )| I B

where

o
Il

and

I

it

foxce (2R -

5B

Some representative values may be obtained by using the data from the Smith-Putnam wind

turbine. The long term wind data yield

0.14
by

0.104 1d*Vy,
h, = Vpdz?

1dVy

N hh =120’

Z=0 Z=0
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and using the values listed below

6 =0.083 R =87.5 ft.
X=6 B=2

C, =55 CL=0.6
a=0.33

we obtain, neglecting the flapping motion of the Smith-Putnam machine,

PITCHING MOMENT
MY
Vi =0.0173 (1 - cos 2Qt) (6-15)
2PVRT
TORQUE VARIATION
7%?? =—0.00153 (1 - cos 2Qt) (6-16)
2P VR T

The numbers are difficult to judge. Accordingly, let us reference the forces to the drag of the

wind turbine and the moments to the torque.

D=C; %4pVainR* , Cp=

w | N

@!

3
Q=Cq 4pVanR® , C, Y" , C,=04
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PITCHING MOMENT

-g =0.259 (1 - cos 2Qxt) (6-17)

TORQUE VARIATION

AQQ =-0.023 (1 - cos 20t) (6-18)

The yaw and drag forces are quite insignificant while the pitching moment is seen to be
quite appreciable, amounting to a variation of 52% of the value of the torque. The torque
variation is seen to be up to a 4.6% decrease in torque and hence also power. The torque
variation itself requires more discussion. Equation (6-14) gives an expression for the torque
change which may be modified to express the percentage torque change.

Adopting the power 1 aw profile given by equation (6-1) we obtain

AC, Xo(l-afC, (RY'| ., [ 4xc, B, sin” 6,
- o | 2| J_9 — L 41in(- L (6-19
Cq 4C (h] T M5 ima)e,, n(i-n) ; g ¢

p

where h is the height of the rotor hub. The effects of scale, tip speed ratio, solidity and load
maybe estimated from equation (6-19). For example a rotor operating at constant RPM at wind
speeds below the design point will have large X and low C,. The torque variation for large scale
will be appreciable.

It may be noted that the bracketed expression in equation (6-19) is approximately equal to

n - 31°. This expression has a maximum value when n = 1/6. Experimental evidence for flow

over smooth terrain yields n = 0.17.
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The expressions developed for the torque variation may also be used to evaluate the
change in power output due to wind gradient. The variation in torque due to the wind gradient is
approximately constant over a wide range of tip speed ratios. The net output of a wind turbine
however changes appreciably with tip speed so that the percentage variation in turbine output
due to wind gradient (or gust) increases greatly as the net turbiﬂe output approaches zero. Figure
6.3 on the following page illustrétes the percentage decrease in mean turbine output due to wind
gradient for the Smith-Putnam wind turbine. Flapping motion of the blades was not included in
this example. The absolute magnitude of the power variation due to gradient may be obtained by

using the results of Figure 6.3 along with Figure 4.8.
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Symbols

Projected rotor disc area

Axial interference factor at the rotora=1-u/V
Tangential interference factor at the rotor a’' = ©/2Q
Number of blades

Axial interference factor in the wake b = 1-u1/V,
Blade chord

Sectional lift coefficient

Sectional drag coefficient

Sectional force coefficient in the direction of rotation

t

Section force coefficient normal to the plane of rotation
Power coefficient, P/(1/2)pAV2 or P/(1/2)pSV?
Sectional drag force per unit length

Lift to drag ratio, L/D

Sectional lift force per unit length

Mass flow rate

Power extracted from the air

Pressure

Rotor radius

Local rotor radius

Rotor or translator projected surface area

Axial flow velocity at the rotor
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W Axial flow velocity in the wake

Voo Free stream wind velocity

% Resultant velocity relatiye to the rotor element
X Tip speed ratio, RQ/V,

X Local speed ratio, rQ)/V

Greek

o Angle of attack

B Angle between the wind and the normal to the translation velocity, Chapter 2; blade pitch
angle, Chaptet 5,6.

) Angle between the plane of rotation and the relative velocity
| Wind-height relation exponent
% Translator velocity

0 Blade pitch angle, Chapters 3, 4; blade rotation angle, Chapters 5, 6
p Fluid density
Q Rotor angular velocity

® Fluid angular velocity downwind of the rotor
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WIND TURBINE PERFORMANCE AND LOADS PROGRAM

The program package is written in the Fortran language and utilizes a Simpson’s
Rule/three pass method of numerical integration. It was written using a CDC 3300 under the
0S-3 operating package at Oregon State University, therefore there may be some small
differences for implementation on other systems.

Logical unit numbers 60, 61, and 62 in the program refer to the card reader, line printer,
and card punch respectively.

The program package consists of a main program with eight subroutines: the main
program PROP performs integration, input and output functions; subroutine TITLES prints input
listing and titles for output; subroutine SEARCH calculates chord and twist angle at a given
station; subroutine CALC determines axial and angular interference factors and related
parameters; subroutine TIPLOS calculates the tip loss factor arid the hub-loss factor; subroutine
BESSEL calculates modified Bessel functions; subroutines NACAOO0 determines sectional lift
and drag coefficients for NACA profile 0012; subroutine NACA44 determines sectional lift and
drag coefficients for NACA profile 4418; NACAXX is an empty subroutine for which a curvefit
for any airfoil secﬁon can be placed without other program changes.

For a given propeller geometry the following information must be inputted and/or
changes made.

1. Subroutine NACAXX must be rewritten to conform to airfoil section used, if
other than NACA 4418, and 0012.

2. Blade geometry must be specified, i.e., chord and twist as a function of percent
radius.

3. Operating conditions specified.
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The parameters to be inputted are:
Radius of blade — R - ft
Hub radius - HB - ft
Incremental Percentage (percent of radius for integration incrementation) — DR
Pitch angle — THETP - degrees
Number of blades — B
Wind velocity — V - mph
Tip speed ratio — X
Axial Interference Model Code — AMOD

0 — original
1 — Wilson, seeAppendixIl

Altitude above sea level —H - ft
Coning angle — SI - degrees
Number of inputted stations for blade geometry specification — NF
NACA Profile —NPROF - 4418 - NACA 4418
0012 - NACA 0012
9999 - Profile curvefit to be in subroutine NACAXX
Tip loss model controller — GO - 0 - Prandtl
1 — Goldstein
2 - None

Hub loss mode controller — HL - 0 - None
1 - Prandt 1

Percent radius for stations RR (I)
Chord dor stations (CI(I)) - ft

Twist angle for stations — THETI(I) - degrees
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Input should be in the following format:

Card 3 Card 4 (Card 5 = Card NF)

Columns Card 1 Card 2

1-10 R B H HL RR(])
11-20 DR A" 81 CI(D
21-30 HB X NF (21-22) THETI (I)
31-40 THETP AMOD GO
41-50 NPROF

Output will be printed on the basis of 140 character-field width.

There are several operation controllers that must be -inputted. These are AMOD , GO,
HL, and NPROF. AMOD determines which method for calculation of axial and angular
interference factors will be used. An input of 0.0 means the Glauert form will also be used,
while an input of 1.0 means the square root form will be used. GO determines the tip loss model.
An input of 0.0 means Prandtl’s model is to be used, the input 1.0 means Goldstein’s model is to
be used, unless the number of blades is greater than two, then the program will choose Prandtl’s
model, and an input of 2.0 means no tip loss model is to be used. The third controller is HL; it
controls the hub loss model. An input of 0.0 means no hub loss model will be used, while an
input of 1.0 means Prandtl’s method is to be used. An input of 0012 means subroutine NACA00
is to be used, which is a subroutine that calculates sectional lift and drag data for the NACA
profile 0012; an input of 4418 means subroutine NACA44 is to be used to calculate sectional lift
and drag data for the NACA profile 4418; an input of 9999 means subroutine NACAXX is to be
used. NACAXX is a subroutine one must add a curve fit for sectional lift and drag coefficients
as a function of angle of attack (degrees). This enables the user to use other profiles without

changes to the program.
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The following are the input Read and Format statements used.
READ (60,10) R,DR,HB,THETP
10 FORMAT (4F10.3)

READ (60,10) B,V,X,AMOD
10  FORMAT (4F10.3)

READ (60,30) H,SLNF,GO,NPROF
30  FORMAT (2F10.3,12,8X,F10.2,14)

READ (60,40) HL
40 FORMAT (F10.3)

READ (60,20) (RR(D), THETI(I),I=1,NF)
20  FORMAT (F5.,5%,F10.5,F10.5)

It should also be noted, that the program takes approximately ten seconds to be compiled on the

CDC 3300. Therefore, if many runs are desired, it would-be desirable to convert the program to

binary form.
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0S3 FORTRAN VERSION 3.12 05/17/74 1045

Oo000000n

[eNeXe]

O0O000O00n

PROGRAM PROP

....... MAIN PROGRAM ......

PROP CALCULATES THE THEORETICAL PERFORMANCE PARAMETERS OF A
PROPELLER TYPE WIND TURBINE. IT UTILIZES A SIMPSON=S-RULE
METHOD / THREE PASS TECHNIQUE OF NUMERICAL INTEGRATION.

DIMENSION RR(25),CI(25), THETI(25)
COMMON R,DR,HB,B,V,X,THETP,AMOD,H,SI,GO,OMEGA,RHO, VIS, HL,PI,RX,
1W,NPROF,T1,T2,T3,T4,T5,T6,T7,58

READ(60,10)R,OR,HB, THETP
READ(60,10)B,V,X,AMOD
READ(60,30)H,SI,NF,GO,NPROF
READ(60,40)HL

READ(60,20)(RR(I),OI(I) ,THETI(I),I=1,NF)
PI=3.1415926536
OMEGA=V*X/R*2640./(60.*PI)

....... PRINT INPUT AND TITLES FOR OUTPUT ......
CALL TITLES(RR,CI, THETI,NF)

....... INITIALIZATION AND CONSTANT PARAMETER CALCULATIONS ......
ITOT=0

T1=0.0

T2=0.0

T3=0.0

T4=0.0

T5=0.0

T6=0.0

T7=0.0

T8=0.0

QY=0.0

TY=0.0

PY=0.0

QX=0.0

TX=0.0

XMXY=0.0

XMYY=0.0

XMXX=0.0

XMYX=0.0

ASTOP=0.0

A=.05
V=V*5280./3600.
SI=SI*PI/180.
THETP=THETP*PI/180.
ALPLO=ALPLO*PI/180.
RHO=0.0023769199*EXP(-0.297*H/10000.)
VIS=0.0000003719 - 0.00000000204*H/1000.
OMEGA=V*X/R
NN=(R-HB)/DR +1.
RX=R
RLB=(1,-DR)*RX
DR=(RX-RLB)*COS(SI)
R=R*COS(SI)
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0S3 FORTRAN VERSION 3.12 PROP 05/17/74 1045

[eXeX2]

50

[eNeXe!

43

44

100
93

HB=HB*COS(SI)
RL=R

DO 100 L=1,NN

IF((RL-HB).GE.DR)GO TO 50
ASTOP=ASTOP+1.

IF(ASTOP.GE.2.) GO TO 93

DR=(RL-HB)

DR2=DR/2.

DT6=DR/6.

RL~RL-DR2

AK=1,

CALL SEARCH(RL,RR,CI,THETI,NF,O, THET)
CALL CALC(RL,C, THET,FXXP1, FYXP1 XMXXP1, XMYXP1 ,QXP1,TXP1,RE,
1PHIR,CL,CD,CX,CY,A, AP XL, AK ALPHA F)
RL=RL-DR2

AK=0.0

CALL SEARCH(RL,RR,CI, THETI,NF,C,THET)
CALL CALC(RL,C,THET,FXY,FYY,XMXXP,XMYXP,QXP,TXP,RE,PHRI,CL,
1CD,CX,CY,A AP, XL,AK,ALPHA,F)
QYX=DT6*(QX+4.*QXP1+QXP)

QY=QY + QYX
TY=TX+DT6*(TX+4.*TXP1+TXP)
PY=PY+OMEGA*QYX

XMXY=XMXY +DT6*(XMXX+4.¥XMXXP1+XMXXP)
XMYY=XMYY+DT6*(XMYX+4.*XMYXP1+XMYXP)
QX=QXP

TX=TXP

XMXX=XMXXP

XMYX=XMYXP
CTY=TY/(.5*RHO*V**2*pPI*RX**2)
CPY=PY/(.5*RHO*V**3*PI*RX**2)
TP=PY/737.6

PHIO=PHIR*180./PI

ALPHA=ALPHA*180./PI

PR=RL/(RX*COS(SI))

....... PRINT OUTPUT ......

ITOT=ITOT+1
IF(ITOT.EQ.4) GO TO 43

GO TO 44

WRITE(61,95)

WRITE(61,70)

WRITE(61,58)

WRITE(61,59)

WRITE(61,95)

ITOT=0

CONTINUE
WRITE(61,201)RL,PR,F,ALPHA,CL,CD,CX,CY,FXY,FYY,XMXY
WRITE(61,200)XMYY,W,QY,CTY,TY,CPY,TP,PHIO,RE
CONTINUE

FYKDE=RX/V*T1/P1

FYKDG=-T2/PI

XMCKDE=-RX/V*T3/PI

XMCKDG=T4/PI

XMZKDE=RX/V*T3/PI
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053 FORTRAN VERSION 3.12 PROP 05/17/74 1045

119 XMZKDG=-T4/PI

120 CQKDE=-RX/V*T5/P1

121 CQKDG=T6/PI

122 PISTEL=T7/(PI*RX**5)

123 PI2STEL=T8*X/(PI*RX**6)

124 WRITE(61,800)FYKDE

125 WRITE(61,801)FYKDG

126 WRITE(61,802)XMCKDE

127 WRITE(61,803)XMCKDG

128 WRITE(61,804)XMZKDE

129 WRITE(61,805)XMZKDG

130 WRITE(61,806)CQKDE

131 WRITE(61,807)CQKDG

132 WRITE(61,808)PISTEL

133 WRITE(61,809)PI2STEL

134 C

135 c L. FORMATS FOR INPUT AND OUTPUT STATEMENTS ......

136 C

137 10 FORMAT(4F10.3)

138 20 FORMAT(F5.1,5X,F10.5,F10.5)

139 30 FORMAT(2F10.3,12,8X,F10.2,14)

140 40 FORMAT(F10.3)

141 95 SIS NEIED ¢.0.0.0.0.0.066006600000000000000000000000000000000000000060064
142 1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX¢)
143 70 FORMAT(///9X,2A#,14X,2AP+,26X,2FT#,18X,#FN=)

144 58 FORMAT(///LX,#R#,10X,2PC-R=,8X,=F#,7X,2ALPHA#,9X,#CL%,9X,=CD=,9X,=
145 10X#,9X,#CY=%,9X,2FX#,8X,2FY#,12X,2MX=z)

146 59 FORMAT(//6X,#MY%,16X,#W=,15X,#0=,11X,2CT=,13X,=T#,9X,2CP=,13X,
147 1#£P#,9X,2PHI#,10X,#RL NU=%)

148 201 FORMAT(///F7.2,5X,F6.4,5X,F6.4,5X,F7.4,5X,F6.4,5X,F6.4,5X,F6.4,5X,
149 1F5.3,5X,F7.2,5X,F7.2,5X,F11.2)

150 200 FOR1AT(//F11.2,5X,F11.2,5X,F11.2,5X,F6.4,5X,F11.2,5X,F6.4,5X,F10.3
151 1,5X,F6.2,5X,E12.3///)

152 800 FORMAT(/=(YAW FORCES DUE TO CONING / BLADE) / (SIN(THETK) ==,
153 1F10.4)

154 801 FORMAT(/#(YAW FORCES DUE TO SHEAR / BLADE) / (SIN(THETK)**2) =,

155 1F10.4)

156 802 FORMAT(/=(CONING MOMENT DUE TO FLAPPING / BLADE) =2,F10.4)

157 803 FORMAT(/=(CONING MOMENT DUE TO SHEAR / BLADE) / (SIN(THETK)) ==,
158 1F10.4) |

159 804 FORMAT(/=(YAWING MOMENT DUE TO FLAPPING / BLADE) / (COS (THETK) ==,
160 1F10.4)

161 805 FORMAT(/#(YAWING MOMENT DUE TO SHEAR / BLADE) / (SIN(THETK)*COS(THE
162 1TK)) ==F10.4)

163 806 FORMAT(/#(TORQUE VARIATION DUE TO CONING / BLADE) =z,

164 1F10.4)

165 807 FORMAT(/#(TORQUE VARIATION DUE TO SHEAR / BLADE) / (SIN(THETK)) ==

166 1,F10.4)

167 808 FORMAT(/= TORQUE VARIATION DUE TO AERODYNAMIC SECOND DERIVATIVE =
168 1 ,F15.4) ’ '

169 809 FORMAT(/= TOROUE VARIATION DUE TO SHEAR SECONO DERIVATIVE = =

170 1,F15.4)

171 Cc

172 STOP

173 END
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174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

0S3 FORTRAN VERSION 3.12 05/17/74 1045

0oO000n

300
340

655
656
657

103
658

777
666

annn

SUBROUTIE TITLES(RR,CI,THETI,NF)

....... TITLES - PRINTS OUT INPUT DATA IN A DESCRIPTIVE
FORM, AND PRINTS DESCRIPTIONS OF SYMBOLS/TITLES FOR OUTPUT.

DIMENSION RR(25),CI(25), THETI(25)
COMMON R,DR,HB,B,V,X,THETP,AMOO, H,S1,GO,0MEGA,RHO, VIS, HL,PI,RX
1,W,NPROF

WRITE(61,50)

WRITE(61,51)

WRITE(61,52) R,DR,HB, THETP
WRITE(61,53)B,V,X
WRITE(61,54) H,SI,NF
WRITE(61,200)OMEGA,NPROF
IF(AMOD.EQ.0.0) GO TO 300
WRITE(61,310)

GO TO 340

WRITE(61,320)

IF(B.GT.2.0) GO TO 655
IF(GO.EQ.0.0) GO TO 103
IF(GO.EQ 1.0) GO TO 656
IF(GO.EQ.2.0) GO TO 657

GO TO 658

IF(GO.EQ.2.0) GO TO 657

GO TO 103

WRITE(61,101)

GO TO 658

WRITE(61,659)

GO TO 658

WRITE(61,100)

IF(HL.EQ.0.0) GO TO 77
WRITE(61,778) :

GO TO 666
WRITE(61,779)
WRITE(61,55)
WRITE(61,56)(RR(1),CI(I),THETI(I),I=1,NF)
WRITE(61,57)
WRITE(61,61)
WRITE(61,169)
WRITE(61,71)
WR1TE(61,60)
WRITE(61,62)
WRITE(61,63)
WRITE(61,64)
WRITE(61,65)
WRITE(61,66)
WRITE(61,67)
WRITE(61,68)
WRITE(61,69)
WRITE(61,95)
WRITE(61,70)
WRITE(61,58)
WRITE(61,59)
WRITE(61,95)

....... FORMATS FOR OUTPUT STATEMENTS ......

FORMAT(////# THEORETICAL PERFORMANCE OF A PROPELLER TYPE WIND TURB
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053 FORTRAN VERSION 3.12 TITLES 05/17/74 1045

233 1INE=)

234 51 FORMAT(///= DATA INPUT RECORD =)

235 52 FORMAT(///- RADIUS-FT=%,F7.2,10X,INCREMENTAL PERCENTAGE ==,F6.4,
236 110X,#HUB RADIUS-FT=%,F5.2,10X,2PITCH ANGLE - DEGREES =#,F7.4)

237 53 FORMAT(/# NO. OF BLADES =#,F3.0,10X,#WIND VELOCITY - MPH ==,F7.2,

238 110X,2TIP SPEED RATIQ ==,F6.3)

239 54 FORMAT(//= ALTITUDE OF SITE ABOVE SEA LEVEL-FT==,F10.2,5X,-CONING
240 1ANGLE-DEGREES ==#,F7.3,5X,2NUMBER OF DATA STATIONS ALONG SPAN =z,12
241 1) ’

242 55 FORMAT(///# PERCENT RADIUS#,5X,2CHORD-FT=%,5X,2TWIST ANGLE-DEGREES+
243 1)

244 56 FORMAT(//5X,F5.1,8X,F10.5,10X,F10.5)

245 57 FORMAT(///////= DATA OUTPUT RECORD=////)

246 60 FORMAT(= RADIUS -- FT -- R#/# PERCENT RADIUS -- PC-Rz)

247 61 FORMAT(# AXIAL INTERFERENCE FACTOR ~- A/ ANGULAR INTERFERENCE FA
248 1CTOR -- AP=)

249 169 FORMAT(# NORMAL FORCE -- FN=/# TANGENTIAL FORCE --FT=)

250 62 FORM4T(# LIFT COEFFICIENT -- CL#/# DRAG COEFFICIENT -- CO=)

251 63 FORMAT(# COEF OF FOKCE-X-DIR -- CX#/#= COEF OF FORCE-Y-DIR -- CY=)

252 64 FORMAT(# FORCE-X-DIR/BLAOE -~ LB -- FX=/« FORCE-Y-DIR/BLADE - LB

253 - 1--FY=)

254 65 FORMAT(# MOMENT-X-DIR/BLADE -~ FT-LB -~ MX#/= MOMENT-Y-DIR/BLAOE
255 1-- FT-LB -- MY=z)

256 66 FORMAT(# RELATIVEC VELOCITY -- FT/SEC --W=/= TORQUE -~ FT-LB -~ Q#)
257 67 FORMAT(# THRUST COEFFICIENT -~ CT#/= THRUST -~ LB --T#)

258 68 FORMAT(# POWER COEFFICIENT -- CP## POWER -- KILOWATTS -- P«)

259 69 FORMAT(# ANGLE PHI -- DEGREES -- PHI =/ REYNOLDS NUMBER -- RE NO=)
260 71 FORMAT(# TIP LOSS FACTOR -- F#/# ANGLE OF ATTACK -- DEGREES ~ ALP

261 1HA%)

262 95 HOI W - NACIE D 0.0,:0.0.0.0.0.0.0.0.0.00.0.0.00.060.006.000000900090000000000060000000000
263 1900000 0000000066060000000600.00.0000.0.00600.000000000000089 006000600
264 70 FORMAT(///9X,#A%,14X,=APx=,26X,#FT=,18X,=FN=)

265 58 FORMAT(///4X,#R#,10X,#PC-R=,8X,=F+,7X,2ALPHA«,9X,=CL#,9X,=CD=,9X,=

266 1CX=,9X,#CY=,9X,2FX#,8X,2FY=,12X,#MXz)

267 59 FORMAT(//6X,=MY=,16X,2W=,15X,2Q=,11X,2CT=,13X,2T=,9X,2CP=,13X,

268 . 1£P#,9X,2PHI=,10X,2RE NO=)

269 310 FORMAT(//+ WILSON AXIAL INTERFERENCE METHOD USED-=)
270 320 FORMAT(//# STANOARO AXIAL INTERFERENCE METHOD USED=)
271 100 FORMAT(//= TIP LOSSES MODELED BY PRANDTLS FORMULA =)
272 101 FORMAT(//= TIP LOSSES MODELED BY GOLDSTEINS FORMULA =)
273 659 FORMAT(//= NO TIP LOSS MODEL USED=)

274 778 FORMAT(//+ HUBLOSSES MODELED BY PRANDTL=)

275 779 FORMAT(//= NO HUBLOSS MODEL USED=)

276 200 FORMAT(//# RPM = #,F20.5,10X,#NACA PROFILE =2,14)

277 C
278 RETURN
279 END
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0S3 FORTRAN VERSION 3.12 05/17/74 1045

280 SUBROUTINE SEARCH(RL,RR,CI, THETI,NF,0, THET)

281 C

282 C e SEARCH - DETERMINES THE CHORD AND THE TWIST ANGLE AT
283 C A GIVEN RADIUS ALONG THE SPAN. IT UTILIZES A LINEAR
284 C INTERPOLATION TECHNIQUE.

285 C :

286 DIMENSION RR(25),CI(25), THETI(25)

287 COMMON R,DR,HB,B,V,X,THETP,AMOD,H,SI,GO,0OMEGA,RHO,VIS,HL,PI,RX
288 DO 20 1=1,NF

289 RRV=RL/(RX*COS(SI))*100.

290 IF(RRV.GE.RR(*1)) GO TO 10

291 IF(I.EQ.NF) GO TO 30

292 20 CONTINUE

293 10 J=I+1

294 PER=(RRV-RR(J-100/(RR(J-2)-RR(J-1))

295 C=PER*(CI(J-2)-CI(J-1))+CI(3-1)

296 THET=PER*(THETI(J-2)-THETI(3-1))+THETI(J-1)

297 GO TO 40

298 30 C=CI(NF)

299 THET=THETI(NF)

300 40 . THET=THET*PI/180.

301 RETURN

302 END
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202 SUBROUTINE CALC(RL,C, THET,FXF,FYF,XMFXF,XMFYF,QF,TF,RE,PHIR,CL,
304 1CD,CX,CY,A,AP,XL,AK,ALPHA,F)

305 C

306 C e CALC - DETERMINES THE AXIAL AND ANGULAR INTERFERENCE
307 C FACTORS AT A GIVEN RADIUS AND DETERMINES FUNCTIONS DEPENDENT
308 C UPON THESE PARAMETERS.

309 C

310 COMMON R,DR,HB,B,V,X, THETP,AMOD,H,SI,GO,0MEGA,RHO, VIS, HL,PI,RX
311 1W,NPROF,T1,T2,T3,T4,T5,T6,T7,T8

312 XL=RL*OMEGA/V

313 RH=HB

314 DO 10 3-1,40

315 BETA=A

316 DELTA=AP

317 PHI=ATAN((1.-A)*COS(SI)/((1.+AF)*XL))

318 PHIAA=ABS(PHI)

319 XXL=COS(PHIAA)/SIN(PHIAA)

320 XXLO=XXL*R/RL

321 PHIR=FHI

322 ALPHA=PHI-THET-THETP

323 ALPHAD=ALPHA+0.001

324 C

325 C .. CALCULATION OF SECTIONAL LIFT AND DRAG COEFFICIENTS
326 C

327 IF(NPROF.EQ.4418) GO TO 400

328 IF(NPROF,EQ.0012) GO TO 500

329 IF(NPROF.EQ.9999) GO TO 550

330 | WRITE(61,600)

331 600 FORMAT(+ YOU HAVE SPECIFIED A NACA PROFILE NOT STORED IN THE PROGR
332 1AM, THE PROGRAM WILL USE NACA 4418.x)

333 400 CALL NACA44(ALPHA,CL,CD)

334 CALL NACA44(ALPHAD,CLD,CDD)

335 GO TO 800

336 500 CALL NACAOO(ALPHA,CL,CD)

337 CALL NACAOO(ALPHAD,CLD,CDD)

338 GO TO 800

339 550 CALL NACAXX(RL,RX,SI,ALPHA,CL,CD)

340 CALL NACAXX(RL,RX,SI,ALPHAD,CLD,CDD)

341 800 IF(ABS(ALPHA).GE.(2.%P1/12.)) CL=0.0

342 C

343 C ... CALCULATION OF TIP AND HUB LOSSES ......

344 C

345 CALL TIPLOS(XXL,XXLO,F,B,GO,HL,PI,R,RL,PHI,RH)

346 C

347 CX=CL*SIN(PHI)-CD*COS(PHI)

348 CY= CL*COS(PHI)*COS(SI)+CD.SIN(PHI)*COS(SI)

349 SIG=(B*C)/(PI*RL)

350 IF(AMCD.EQ.0.) GO TO 575

351 VBR=(0.125*SIG*CY)/(SIN(PHI)**2)

352 VAR=(0.125*SIG*CX)/(F*SIN(PHI)*COS(PHI))

353 CAN=F*F+4.*VBR*F*(1.-F)

354 IF(CAN.LT.0.0) CAN=0.0

355 A=(2.¥*VBR.F-SQRT(CAN))/(2.*(VBR+F*F))

356 AP=VAR/(1.-VAR)

357 GO TO 580

358 575 VBR=0.125*SIG*CY

359 VAR=0.125*SIG*CX

360 A=VBR/(F*SIN(PHI)**2+VVR)

361 AP=VAF/(F*SIN(PHI)*COS(PHI)-VAR)
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362 580 PCR=RL/(RX*COS(SI))

363 C e DAMPENING OF AXIAL AND ANGULAR INTERFERENCE FACTOR
364 ITERATIONS.

365 C

366 IF(J-4) 30,40,90

367 IF(J-10) 30,40,110

368 110 IF(3-15) 30,40,30

369 40 A=(A+BETA)*.5

370 AP=(AP+DELTA)*.5

371 C

372 30 IF(AK.GE.1.) GO TO 70

373 WRITE(61,60) A, AP

374 60 FORMAT(2F15.8)

375 C

376 C e TEST FOR CONVERGENCE ......

377 C :

378 70 IF(ABS((AP-DELTA)/AP).LE..0001) GO TO 50
379 C

380 10 CONTINUE

381 C

382 C ... CALCULATION OF FUNCTIONS DEPENDENT UPON AXIAL AND
383 C ANGULARINTERFERENCE FACTORS.

384 C

385 50 W=((1.-A)*V*COS(SI))/(SIN(PHI))

386 RE=RHO*W*C/VIS

387 CONST=(0.5%RHO*(W**2)*C)

388 FXF=CONST*CX

389 FYF=CONST*CY

390 XMEXF=FXF*(RL-HB)

391 XMFYF~FYF*(RL-HB)

392 CT1=(0.5*RHO*B*C)*(W*W)

393 QF=CT1*RL*CX

394 TE=CT1*CY

395 DPCR=DR/(2.*RX)

396 CR=C/RX

397 CLA=(CLD-CL)/0.001

398 CDA=(CDD-CD)/0.001

399 CXP=CLA*SIN(PHI)-CDA*COS(PHI)+CY

400 CYP=CLA*COS(PHI)+CDA*SIN(PHI)-CX

401 FT=(2.*CX+CXP/ATANF(PHI))*(1.-A)*CR*PCR
402 FN=(2.*CY+CYP/ATANF(PHI))*(1.-A)*CR*PCR
403 WRITE(61,699) FT,FN

404 699 FORMAT(40X,2F20.7)

405 T1=T1+FT*DPCR

406 T2=T2+FT*(1.-A)DPCR

407 T3=T3+FN*PCR*DPCR

408 T4=T4+FN*(1.-A)*PCR*DPCR

409 T5=T5+FT*PCR*DPCR

410 T6=T6+FT*(1,-A)*PCR*DPCR

411 T7=T7+(((2.-COS(PHI)**2)*CL*SIN(PHI)-2.*COS(PHI)**3*CD+
412 12.COS(PHI)*CLA)*(1.-A)**2*RL**3%*C)*DR/2.
413 T8=T8+(((1.+SIN(PHI)**2)*CL-CO*SIN(PHI)+CLA*SIN(PHI))
414 1*(1.+AP)*(1.-A)*RL*4*C)*DR/2.

415 C

416 RETURN

417 END
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418
419 SUBROUTINE TIPLOS(U,UO,F,Q,GO,HL,PI,R,RL,PHI,RH)

420 C

421 C ... TIPLOS — DETERMINES THE TIP AND HUB LOSSES

422 BASED UPON GOLDSTEIN=S THEORY, OR PRANDTL#%S THEORY,
423 OR FOR THE CASE OF NO LOSSES.

424 C

425 SUM2=0.0

426 SUM=0.0.

427 AK=1.

428 AMM=1,

429 AM=0.0

430 IF(0.GT.2.0) GO TO 966

431 IF(GO.EQ.0.0) GO TO 200

432 IF(GO.EQ.1.0) GO TO 100

433 IF(GO.EQ.2.0) GO TO 444

434 966 IF(GO.EQ.2.0) GO TO 444

435 200 CONTINUE

436 F=(2./PI)*ACOSF(EXP(-(Q*(R-RL))/(2.*RL*SQRT(SIN(PHI)**2 +.0001))))
437 "~ GO TO 105

438 444 F=1.0

439 GO TO 105

440 100 IF((ABS(SIN(PHI))).LT..0001) GO TO 200

441 C

442 C .... GOLDSTEINS METHOD.......

443 C

444 DO 10 M=1,3

445 V=(2.*AM+1.)

446 Z0=UO*V

447 V2=V*V

448 Z=U*V

449 22=2*Z

450 CALL BESSEL(Z,V,AI)

451 CALL BESSEL(Z0,V,AI0)

452 IF(Z.GE.3.5) GO TO 300

453 A=2,%2,

454 B=4.%4,

455 C=6.%6.

456 D=8.*8. ,

457 TIVZ=22/(A-V2)+(Z2*Z2)/((A-V2)*(B-V2))+(Z2**3)/((A-V2)*(B-V2)*
458 1(C-V2))+(Z2**4)/((A-V2)*(B-V2)*(C-V2)*(D-V2))

459 CT1VZ=(V*PI*AI)/(2.*SIN(.5*V*PI)) ~T1VZ

460 GO TO 400

461 300 TO=(U*U)/(1.+U*U)

462 T2=4 ¥U*U*((1.+U*U)**4

463 T4=16.%U*U*(1.-14.*U*U+21,%U**4 - 4 xU**6)/((1.+U*U)**7)
464 T6=64.%U*U*(1.-75.¥U*U+603.¥U**4-1065.¥U**6+460.*U**8-36.*U**10)
465 1/((1.+U*U)**10) '

466 CTIVZ=TO+T2/V2+T4/(V2**2)+T6/(V2**3)

467 400 FVU=(U*U)/(1.+U*U) - CT1VZ

468 SUM=SUM+FVU/V2

469 IF(AM.NE.0.0) GO TO 1

470 E=-0.098/(UO**.668)

471 1 IF(AM.NE.1.0) GO TO 2

472 E=0.031/(UO**1,285)

473 2 IF(AM.GT.1.0) E=0.0

474 SUM2=SUM2 +((UO*UO*AMM)/(1.+UO*UO) —E)*(AI/AIO)
475 AM=AM+1. -

476 AK=((2.*AM-1.)*AK)/(2.*AM)

101



0S3 FORTRAN VERSION 3.12 TIPLOS 05/17/74 1045

477 10 AMM=AK/(2.*AM+1.)

478 G=(U*U)/(1.4+U*U)-(8./(PI*PI))*SUM
479 CIRC=G-(2./PI)*SUM2

480 F=((1.+U*U)/(U*U))*CIRC

481 Cc

482 C HUBLOSS CALCULATIONS

483 Cc

484 105 IF(HL.EQ.1,0) GO TO 500

485 FI=1.0

486 GO TO 900

487 500 FI=(2./PI)*ACOSF(EXP(-(Q*(RL-RH))/(2.*RH*SQRT(SIN(PHI)**2 +
488 1.0001)))) )

489 900 F=F*FI

490 RETURN

491 END
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492 SUBROUTINE BESSEL(Z,V,AI)
493 C

494 cC BESSEL CALCULATES BESSEL FUNCTIONS FOR THE GOLDSTEIN
495 TIP LOSS MODEL......
496 C

497 $=0.0

498 AK=0.0

499 C= 1.

500 DO 30 K=1,10

501 B=(.25*Z*Z)**AK

502 D=V+AK

503 pP=1,

504 5 TK=D-1,

505 IF(TK.LE.0.0) GO TO 40
506 P=D*TK*P

507 D=D-2.

508 GO TO 5

509 40 E=P

510 S=B/(C*E) + S

511 AK=AK+1.

512 C=AK*C

513 30 CONTINUE

514 Al=((.5*Z)**V)*S

515 RETURN

516 END
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518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

0S3 FORTRAN VERSION 3.12 05/17/74 1045

O000O00

25

SUBROUTINE NACAOO(ALPHA,CL,CD)

........ NACA - DETERMINES THE COEFFICIENTS OF LIFT AND DRAG

AT A GIVEN ANGLE OF ATTACK, ALPHA; FOR A NACA 0012 AIRFOIL.

THE EQUATIONS WERE OBTAINED BY A ORTHOGNAL POLYNOMIAL
CURVEFIT OF NACA DATA PUBLISHED IN NACA REPORT NO. 669,PAGE 529,

A0=5.73
A2=7.*A0

$D0=0.0058

SD1-0.0006

SD2=.130

SD3=0.0168

SD4=0.0006

SD5=12570.

AMAX=0.218

A=ALPHA

IF(A.GT.AMAX) GO TO 24
CL=A0*A
CD=SD0+(SD1+A)+(SD2*A*A)
GO TO 25
CL=(A0*A)-(A2*(A-AMAX)**2)
IF(CL.GE.0.0) GO TO 61
CL=0.0
CD=SD3+SD4*(A-AMAX)**2 +SD5*(A-AMAX)**4
IF(CD.LE.1.0) GO TO 25
CD=1.0

RETURN

END
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547
548
549
550
551
552
553
554
555
556
557
558
559
660
661
562
563
564
565
566
567
568
569
570
571
572
573
574
575
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O0O0O0O0O0n

10

20

30

50

60
100

SUBROUTINE NACA44 (ALPHA,CL,CD)

veere.. NACA - DETERMINES THE COEFFICIENTS OF LIFT AND DRAG

AT A GIVEN ANGLE OF ATTACK, ALFHA; FOR A NACA 4418 AIRFOIL.

THE EQUATIONS WERE OBTAINED BY A ORTHOGNAL POLYNOMIAL
CURVEFIT OF NACA DATA PUBLISHED IN NACA REPORT NO. 824, PAGE 401.

ALP=ALPHA*180./3.141593

IF(ALP.GE.8.0) GO TO 20

CL=0.099375*ALP + 0.3975

IF(ALF.6G.+2.0) GO TO 10
CD=0.00001644&ALP + 0.000028188623*ALP**2 - 0.000000704*ALP**3
1+0.00661

GO TO 100

CD=0.0001695356*ALP + 0.00002732*ALP**2 + 0.0000023229*ALP**3
1+ 0.00629752

GO TO 100

IF(ALP.GE.12.0) GO TO 30

CL= 0.0731*ALP + 0.6078

GO TO 10

IF(ALP. GE.15.5) GO T0 50

CL= 0.214377*ALP - 0.00738*ALP**2 - 0.0248
GO TO 10

IF(ALP.GE,16.0) GO TO 60

CL= -0.11*ALP + 3.23

GO TO 10

CL= -0.029*ALP +1.934
CD=+0.0131686686494*ALF - 0.1851985
RETURN

END
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585
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O O0O000O0O0

SUBROUTINE NACAXX(ALPHA,CL,CD)

..... NACAXX IS AN EMPTY SUBROUTINE FOR USE FOR A PROFILE
NOT PREVIOUSLY STORED. ONE MUST INSERT CURVE FIT EQUATICNS
FOR SCCTIONAL LIFT AND DRAG COEFFICIENTS AS A FUNCTION OF
ANGLE OF ATTACK IN DEGREES.

ALP=ALPHA*188./3.141593

ADD CURVE FIT PROGRAM FOR CL AND CD
RETURN

END

NO ERRORS FOR NACAXX
LENGTH OF SUBPROGRAM. 00026
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THE USE OF THE “F” FACTORS

Since vorticity is conserved, the circulation in the wake must be equal to the circulation
“generated” by the blades

Hence
Lot = ‘{V -ds

Using a circular path

21
[t = I {2a'rQ2}rdo
0
T
wake
tangent
velocity

For an infinite number of blades a’ # a’ (0), i.e., a’ is constant.

_ [}
Uistaly o = 4nr a'rQ

For finite blades a’ is a function of 0, increasing near the blades and decreasing in between.

Hence, the circulation I' is a function of the circulation calculated above

| ﬂ;ﬁ per blade

At this same time, from Kutta-Joukowski

c
Dyin =§ CL W
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Now it included the drag generated circulation the ratio of I'ota to 'L S

1—‘T Cx

T, C,sing

Since dQ, = (fxdf?)x

dF = pWxI'dr , dF, = 1 pW? cC,dr

Combining
C, _4mFaTtQ 1Q _ cosd
C_sing BecC W ~ W 1+a
. Be
since 6 =—
nr
1 oC,
1+a’ 8Fsin¢ cos¢
Now thrust is determined by

dTmomentum = dTblade clement

PV, (1 —a)2aV,, 2xrdr = —122 pWZCycdr

Consider “a” to be localized at the rotor disk also, then
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28 = F— F? +4SF(1-F)
a=
2(s+F?)
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