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Abstract
Traditional therapies against cancer, chemo- and radio
therapy, have multiple limitations that lead to treatment 
failure and cancer recurrence. These limitations are 
related to systemic and local toxicity, while treatment 
failure and cancer relapse are due to drug resistance 
and self-renewal, properties of a small population of 
tumor cells called cancer stem cells (CSCs). These 
cells are involved in cancer initiation, maintenance, 
metastasis and recurrence. Therefore, in order to 
develop efficient treatments that can induce a long-
lasting clinical response preventing tumor relapse it is 
important to develop drugs that can specifically target 
and eliminate CSCs. Recent identification of surface 
markers and understanding of molecular feature 
associated with CSC phenotype helped with the design 
of effective treatments. In this review we discuss target
ing surface biomarkers, signaling pathways that regulate 
CSCs self-renewal and differentiation, drug-efflux pumps 
involved in apoptosis resistance, microenvironmental 
signals that sustain CSCs growth, manipulation of 
miRNA expression, and induction of CSCs apoptosis 
and differentiation, with specific aim to hamper CSCs 
regeneration and cancer relapse. Some of these agents 
are under evaluation in preclinical and clinical studies, 
most of them for using in combination with traditional 
therapies. The combined therapy using conventional 
anticancer drugs with CSCs-targeting agents, may offer 
a promising strategy for management and eradication of 
different types of cancers.
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Core tip: Cancer stem cells (CSCs) play important roles 
in tumor formation, metastasis and cancer relapse. 
In this article, we review the literature on the recent 
progress in developing anti-cancer stem cell strategies 
based on improved understanding of CSCs properties 
and molecular features. These novel therapeutic 
systems are designed with the aim of eradicating CSCs, 
by targeting surface specific markers and altering 
signaling pathways or mechanisms involved in CSCs 
maintenance and drug resistance, and also to disturb 
microenvironmental signals that sustain CSCs growth, 
with specific aim of impede CSCs regeneration and 
cancer relapse.

Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-
Economescu M. Therapies targeting cancer stem cells: Current 
trends and future challenges. World J Stem Cells 2015; 
7(9): 1185-1201  Available from: URL: http://www.wjgnet.
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org/10.4252/wjsc.v7.i9.1185

INTRODUCTION
Tumor progression is explained by two models: The 
clonal (stochastic) evolution model and cancer stem 
cell model. The first one sustain that all transformed 
cell within a tumor have carcinogenic potential, with 
unlimited proliferation capacity, and the disease 
healing requires as therapy the elimination of all 
tumor cells[1,2]. This hypothesis is supported by several 
studies demonstrating that a large number of cancer 
cells sustain tumor growth when are transplanted 
into histocompatible mice and the relevant results in 
this area depends on the xenotransplantation model 
used. Thereby, modifying xenotransplantation assay 
conditions can increase the detection of all tumorigenic 
cells[3,4]. The second cancer evolution model sustain that 
tumors evolve from a small population of cells with self-
renewal ability and high resistance to chemotherapy and 
radiotherapy. These cells were called CSCs or cancer 
initiating cells, due to their capacity to auto-regenerate, 
proliferate and induce tumor formation. Among their 
properties, resistance to standard oncology treatments 
is responsible for ineffectiveness of traditional cancer 
therapies and lead to tumor recurrence and meta
stasis[5]. 

The CSCs model gained wide acceptance over the 
last years, based on continuous observations. Recent 
data suggests that CSCs might evolve from normal 
stem cells, progenitors or more differentiated cells 

with whom they share many resemblance like: Self-
renewing, differentiation to progenitor cells, expression 
of surface markers, common signaling pathways and a 
close association with microenvironment[2]. 

There are two hypothesis regarding CSCs formation: 
(1) transformation of normal stem cells or progenitor 
cells into CSCs, process that occurs through multiple 
gene mutations as result of genetic and epigenetic 
instability[6]; and (2) tumor cells progressively acquire 
stem cell properties through reversal of ontogeny based 
on oncogene-induced plasticity[7]. 

Several studies suggest that epithelial-mesen
chymal transition (EMT) process characterized by the 
repression of epithelial markers (e.g., E-cadherin) and 
up-regulation of mesenchymal markers (e.g., vimentin, 
fibronectin and N-cadherin) can also generates cells with 
stem-like properties[8]. Mani et al[9] using immortalized 
human mammary epithelial cells demonstrated that 
EMT induction results in the enrichment of cells with 
stem-like properties, an increased expression of stem-
cell markers and an increased capacity of cells to form 
mammospheres. Gupta et al[10] showed that E-cadherin 
inhibition and EMT induction, respectively leads to 
an increase number of CSCs in breast cancer cell 
populations, characterized by an increased resistance to 
chemotherapy.

CSCs were first described in acute myeloid leuke
mia, in which a population of CD34+CD38- was noticed 
to possess stem cells capacities of proliferation, self-
renewal and differentiation, and to reconstitute a 
heterogeneous cell population in nonobese diabetic/
severe combined immunodeficiency mice[11]. Later, 
CSCs were identified in various solid tumors including 
glioma[12], as well as breast[13], head and neck[14], 
lung[15], pancreatic[16], liver[17], stomach[18], colon can
cer[19], etc.

Current review presents basic information about 
CSCs and discusses targeted therapeutic strategies 
developed for cancer eradication.

CSC: DEFINITION, CHARACTERISTICS, 
MARKERS
CSCs are auto-regenerating cells, able to proliferate and 
differentiate through symmetrical and asymmetrical 
cell divisions, with tumorigenic potential and specific 
surface markers useful for CSC identification and 
isolation. Additionally, several other properties like 
sphere forming capacity in serum-free medium or soft 
agar, dye exclusion ability based on over-expression of 
drug-efflux pumps (ATP binding cassette or multidrug 
resistance transporters), enzymatic activity of aldehyde 
dehydrogenase 1, are used to identify CSCs. However, 
the most important property of CSCs can be verified 
only by in vivo assay: Tumorigenicity in animal model, 
maintained even after serial transplantation.

The surface markers for CSCs vary according to 
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tumor type. Main surface markers for CSCs from solid 
tissue are CD133, CD44 and CD24. To these, several 
other more specific markers might be added, according 
to tumor tissue origin (Table 1). Thus, the phenotype 
epithelial specific antigen (ESA+) together with CD44+
CD24+ was described in pancreatic CSCs[16], while 
ESA+CD44+CD24-/low was the phenotype identified in 
breast CSCs[13]. For liver CSCs the following combination 
ESA+CD133+CD90+CD44+CD24+ was proposed[17]. For 
hematological malignancy CD34 and CD38 are main 
surface antigens[11]. Subsequently novel markers have 
been found to be highly expressed on leukemia stem 
cells than normal hematopoietic stem cells. These 
include CD47[20], C-type lectin-like molecule-1 (CLL-1)[21], 
CD96[22], TIM3[23], CD32 and CD25[24]. 

Although recent studies have contributed to a 
better understanding of CSCs surface molecules, the 
picture is not complete. It is often observed that CSCs 
do not express the same markers, or that normal cells 
also express these surface antigens. Therefore, it is 
not possible yet to certainly isolate CSCs, but only to 
identify a CSCs-enriched population. Consequently, 
identification of CSCs must be based on additional 
functional assays such as the ability to form spheres 
in serum-free medium and to initiate tumor growth 
after serial transplantation in immunocompromised 
animal models, based on their self-renewal capacity. 
However, these assays also have limitations due to 
microenvironment. Thus, the in vitro assay may not 
detect quiescent stem cells that are not capable to 
develop spheres due to lack of additional extrinsic 
signals needed for their activation. Moreover, in this 
type of assay there is a selection pressure imposed by 
specific culture conditions in presence of exogenous 
growth factors. Serial transplantation as well might 
have limitations, since considerable number of cells 
is required to induce tumor growth in vivo, due to 
insertion in a foreign microenvironment deficient in 
specific signals for survival and development[25].

Therefore, to specifically address CSCs in further 
experiments, it is necessary to sort cells based on 
surface markers and subsequently to assess their 
functional abilities by in vitro and in vivo specific assays.

THERAPIES TARGETING CANCER STEM 
CELLS
Traditional therapies against cancer, chemo- and 
radiotherapy, have multiple limitations that result 
in treatment failure and cancer recurrence. These 
limitations are related to systemic and local toxicity 
because the agents are not selective enough and may 
affect also healthy tissue. An additional restriction is 
drug resistance due to CSCs specific properties like: 
Slow rate of division, high expression of drug-efflux 
pumps, high capacity for DNA repairing, and also to 
microenvironment characteristics: hypoxia and acidosis. 
Therefore, targeting CSCs became essential in treating 
cancer and preventing tumor relapse. 

Recently, multiple strategies have been conceived 
with the specific aim of destroying CSCs and their 
niche. These include targeting specific surface markers, 
modulation of signaling pathways, adjustment of the 
microenvironment signals, inhibiting of drug-efflux 
pumps, manipulation of miRNA expression, induction 
of CSCs apoptosis and differentiation. A summary of 
these therapeutic strategies is presented in the Figure 1. 
At the moment, some of them are successfully used in 
clinic, mainly in combination with traditional therapies, 
and others are still under evaluation.

Targeting surface markers
The surface markers used for identification and 
isolation of CSCs are also important targets for therapy. 
Immunotherapy that involves antibodies targeting 
CSCs specific markers is often used as an adjunct to 
chemotherapy, radiotherapy and surgery. The most 
important CSCs associated markers together with 
strategies for targeting them are mentioned below.

CD133 (prominin-1) is a cell surface glycoprotein 
widely expressed on CSCs in solid tumors such as 
glioma[12], lung[15], liver[17] and, colorectal cancer[19,26]. 
Cancers with large CD133 subpopulation have a drug 
resistant phenotype and poor prognosis. For this 
reason, several strategies for anti-CD133 therapy 
have been generated. The polymeric nanoparticles 
loaded with paclitaxel (CD133NPs) targeting CD133 
were tested on colorectal adenocarcinoma Caco-2 cells 
and proved to efficiently decrease the cell number 
and colonies formed. On the other hand, in xenograft 
model, the CD133NPs improved therapeutic efficacy 
compared to free paclitaxel treatment[27]. Another anti-
CD133 antibody constructed through the fusion with 
pseudomonas exotoxin 38, inhibited the progression of 
tumor growth after multiple intraperitoneal injections 
of drug over a period of 4-6 wk in xenografted mice 
with ovarian cancer. The elimination of CD133+ ovarian 
cancer cells resulted in long-term disease free tumor 
survivors[28]. These studies suggest that anti-CD133 
therapy might be associated with drug delivery, forming 
antibody-drug conjugates that enhance the effect on 
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  Cancer type Surface 
antigens

Ref.

  Leukemia CD34+CD38-CD47+CCL-1+CD96+ 
TIM3+CD32+CD25+

[11,20-24]

  Brain CD133+ [12]
  Head and neck CD44+CD24+ [14]
  Breast ESA+CD44+CD24- [13,16]
  Pancreatic ESA+CD44+CD24+ [13,40]
  Lung CD133+CD44+ [15]
  Liver ESA+CD133+CD90+CD44+CD24+ [17]
  Gastric CD44+ [18,38]
  Colorectal ESA+CD133+CD166+CD44+CD24+ [19,26]

Table 1  Cell surface antigens present on cancer stem cells
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to apoptosis[35,36]. It was found overexpressed in many 
tumor cells: breast[13], bladder[37], gastric[38], prostate[39], 
pancreas[40], ovar[41], colorectal[26,42], hepatocellular[43], 
head and neck[44], acute myeloid leukemia (AML) 
CSCs[45], etc. Targeting CD44 with monoclonal antibodies 
appears as a good strategy to eliminate CSCs. Treat
ment with anti-human CD44 monoclonal antibody 
can induce myeloid differentiation in patient-derived 
AML blasts, inhibits homing to the microenvironmental 
niche and alters stem cell fate[46]. Marangoni et al[47] 
used an anti-human CD44 monoclonal antibody in 
combination with doxorubicin and cyclophosphamide to 
prevent relapse of aggressive breast cancer. Moreover, 
a mouse IgG1 anti-human CD44 receptor that inhibits 
CD44-STAT3 signaling pathways was used on human 
pancreatic cancer stem-like cells or MiaPaCa-2 cells and 
was found to decrease in vitro tumor sphere formation 
of CSCs, inhibiting pancreatic tumor growth, metastasis 
and tumor recurrence in xenografted nude mice[48]. 
Similar results were obtained in colorectal, lung, bladder, 
larynx and breast cancers[49,50].  

CD47 is a transmembrane protein, receptor for 

CD133+ CSCs and eliminate them. Anti-CD133+ cell 
therapy was also tested on sarcoma CSCs, reducing 
proliferative capacity and resulting in decreased 
sarcoma tumor-initiating ability[29]. Similar results were 
obtained for pancreatic and hepatic CSCs[30,31]. 

However CD133 expression is not restricted to CSCs. 
Shmelkov et al[32] demonstrated that both CD133+ 
and CD133-metastatic colon cancer cells can initiate 
tumors. Also, Beier et al[33] demonstrated that CD133+ 
and CD133-glioblastoma cancer cells meet stem cell 
criteria, but they might reflect two biologically distinctive 
glioblastoma subtypes. The authors concluded that 
primary glioblastomas might develop either from diffe
rent cells of origin or from related cell types that further 
acquired different molecular alterations.

CD44 is a transmembrane protein that mediates 
cell to cell adhesion and cell to extracellular matrix 
interactions, being a receptor for hyaluronic acid, selectin, 
collagen, osteopontin, fibronectin and laminin[34]. CD44 
is involved in cell proliferation, survival, migration, 
differentiation, apoptosis, self-renewal, niche prepara
tion, epithelial-mesenchymal transition, and resistance 
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Targeting surface 
markers

CD133, CD44, 
CD24, ESA

CD34+CD38-, CD47

Targeting 
signal cascades

Notch, Hedgehog,
Wnt/b-catenin,

 PI3K/Akt, 
NF-kB

Targeting 
microenvironment
CXCL12-CXCR4,

angiogenesis, hypoxia, 
acidic pH

Manipulation of 
miRNA expression
miR-21, miR-34, 

miR-124, miR-137

Cancer stem cell

Targeting 
ABC cassette
Verapamil, 

cyclosporin A, 
MS-209, Tariquidar

Induction of CSCs 
apoptosis

TRAIL, NF-kB

Induction of CSCs 
differentiation
ATRA, HDACI,

 miR-100

Figure 1  Therapies targeting cancer stem cells. Numerous therapies aiming to eradicate cancer stem cells have been developed during last year’s. Here we 
highlighted most common seven approaches: targeting surface biomarkers, signaling pathways that regulate cancer stem cells (CSCs) self-renewal and differentiation, 
drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs 
apoptosis and differentiation, with specific aim of hamper CSCs regeneration and cancer relapse. ATRA: All trans retinoic acid; HDACI: Histone deacetylase inhibitors; 
PI3K: Phosphatidylinositol 3-kinase; NF-kB: Nuclear factor kappa B; TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand.
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suppressor functions[63,64]. Notch signaling pathway 
comprises four Notch receptors (Notch 1, Notch 2, 
Notch 3 and Notch 4) and five ligands (Delta-like 1, 
Delta-like 3, Delta-like 4, Jagged 1 and Jagged 2); 
depending on the cellular type, many studies have been 
focused on activation or inhibition of these proteins[65,66]. 
In vitro and in vivo studies showed that human lung 
cancer lines presented an overexpression of Notch3; 
downregulation of Notch signaling, using a specific 
inhibitor was associated with decrease of tumor cell 
proliferation, induction of apoptosis, and inhibition of in 
vivo growth. Notch3 was also found to be overexpressed 
in resected human lung cancers and was associated with 
poor overall survival[67,68]. Moreover, activation of Notch4 
and Notch1 was noted breast CSCs, and inhibition of 
these receptors, especially Notch4, leads to decreased 
activity of breast CSCs in vitro, and reduced tumor 
development in vivo[69]. In hepatocellular carcinoma, 
inhibition of Notch signaling pathway also reduced the 
invasion of tumor cells by downregulation of matrix 
metalloproteinase-2 and -9 and vascular endothelial 
growth factor[70]. In colorectal cancers, Notch1 signaling 
seems to have a dual role; it can increase the tumor 
progression but also counteracts β-catenin signaling 
whose activation is an important factor in human 
colorectal carcinogenesis[71]. Many studies reported 
an overexpression of Notch signaling proteins in head 
and neck squamous cell carcinoma, sustaining a pro-
oncogenic role of this signaling but recent exome 
sequencing analyses reported loss-of-function mutations 
in the Notch1 gene in a significant proportion of patients 
with this malignancy[72].

Notch signaling inhibitors tested in clinical trials 
include inhibitors of γ-secretase complex involved in Notch 
activation and antibodies against DLL-4 and Notch-1, 
-2 or -3 receptors[43]. Results for phase 1 clinical trial 
using BMS-906024, one of these γ-secretase inhibitors, 
for patients with relapsed T-cell acute lymphoblastic 
leukemia showed at least 50% reduction in BM blasts in 
8 of the 25 patients (32%)[73].

Recently was reported the development of an 
antibody OMP-59R5 (tarextumab) which alone or 
together with chemotherapeutic agents can inhibit 
Notch2 and Notch3 function. The antitumor effect 
of OMP-59R5 was observed on xenograft tumors 
representing different types of epithelial cancers like 
breast, small-cell lung, ovarian, and pancreatic; and was 
associated with down-regulation of Notch target genes 
in tumor cells and with suppression of Notch3, HeyL, 
and Rgs5, expression in tumor stroma[74]. 

Hedgehog is another pathway that plays an 
important role in stem cells maintenance and embryonic 
development, being involved in various cellular pro
cesses such as proliferation and differentiation; this 
cascade was also aberrant activated in several human 
tumors, including glioblastoma, breast cancer, pancreatic 
adenocarcinoma, multiple myeloma and chronic mye
loid leukemia[75,76]. Furthermore, Hedgehog signaling 

thrombospondin family members and for signal regula
tory protein alpha (SIRPα)[51]. It was found widely 
expressed on AML CSCs[20] and almost all human 
solid tumor cells[51,52]. Two anti-CD47 mAbs such as 
B6H12.2 and B6H12 were developed as strategy for 
cancer therapy. In a xenograft mouse model, B6H12.2 
antibodies prevented the engraftment of human AML 
cancers stem cells and completely eradicated them[20]. 
Administration of B6H12.2 prevented and inhibited 
growth of tumors derived from glioblastoma, ovarian, 
breast, colon, bladder cancer[52], human non-Hodgkin 
lymphoma[53], acute lymphoblastic leukemia[54] and 
multiple myeloma CSCs[55]. B6H12, a fully humanized 
anti-CD47, effectively inhibits aggressive leiomysarcoma 
growth and metastasis in xenograft mice model[56].

Other antibodies approved by FDA for the treatment 
of solid and haematological tumours, e.g., rituximab 
(anti-CD20), cetuximab (anti-EGFR), trastuzumab (anti-
HER2), bevacizumab (anti-VEGF-A), ipilimumab (anti-
CTLA-4), pembrolizumab (anti-PD-1) are currently used 
in immunotherapy against tumor cells[57]. 

Targeting signal cascades
One of the mechanisms by which CSCs manage to 
avoid or to survive cancer treatments seems to be 
represented by signals generated within the tumor 
microenvironment, due to dysregulation of signaling 
pathway networks[58]. Like normal stem cells, CSCs use 
signaling pathways that are essential for self-renewal, 
proliferation and differentiation in order to preserve 
stem cell properties but the final result is carcinogenesis. 
Many studies have focused on signaling pathways 
dysregulation in CSCs attempting to find new strategy for 
cancer therapy; this line of research is promising mainly 
because many cancers present up- or down-regulation 
of the same signaling cascades. In this regard, CSCs 
can be identified by surface markers but also by the 
signals they send in tumor microenvironment[59]. The 
major signaling pathways involved in the regulation of 
self-renewal and differentiation of normal and cancer 
stem cells are Notch, Hedgehog, Wnt/b-catenin, NF-
kB, phosphatidylinositol 3-kinase (PI3K)/Akt, PTEN; 
sustained by aberrant activation of these pathways, 
CSCs have the capacity to initiate cancer and promote 
recurrence after the surgical removal of tumor[60].

Notch signaling cascade is one major pathway 
involved in numerous critical cellular processes, including 
stem cell maintenance, progenitor cell proliferation 
and differentiation, and determination of cell fate 
during embryonic development[61,62]. Notch signaling 
involvement in carcinogenesis and tumor progression 
seems to depend on tissue/cell-type. Thereby, Notch 
signaling was identified as oncogenic due to an increased 
activation in T-cell acute lymphoblastic leukemia, 
medulloblastoma, colorectal cancer, non–small cell lung 
carcinoma, hepatocellular carcinoma, melanoma, and 
breast cancer while in myeloid malignancies, head and 
neck squamous cell carcinoma, Notch displays tumor 
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mammary gland[85]. A minor subpopulation of breast 
tumor-initiating cells associated with drug resistance was 
identified in human breast cancer; in vitro and in vivo 
study showed that suppression of Wnt signaling inhibited 
sphere- and colony-formation of primary breast tumor 
cells and blocked tumor growth in murine models[86]. 

Wnt/β-catenin signaling pathway includes Wnt 
ligands, Frizzled receptors and a complex, composed 
of APC, Axin1, Glycogen synthase kinase 3-β, and CK1 
(casein kinase 1) which stabilizes β-catenin[87]. Wnt/
β-catenin inhibitors include small-molecule inhibitors 
(e.g., nonsteroidal anti-inflammatory drugs and natural 
compounds: aspirin, indomethacin, vitamins A and 
D derivatives) and biologic inhibitors (monoclonal 
antibodies, small interfering RNAs and recombinant 
proteins)[2].

OMP-54F28 is an example of Wnt signaling inhibitor 
with interesting results in clinical trials, in several 
advanced solid tumors, such as ovarian, pancreatic 
and hepatocellular cancers[88]. OMP-18R5 - an antibody 
targeting several Frizzled receptors - reduces tumor cell 
proliferation and tumor-initiating cell number in lung, 
breast, colon, and pancreatic tumors[89]. In vitro study 
on lung CSCs showed that β-catenin nuclear transfer 
inhibitor PP significantly decreased colony formation and 
downregulated pluripotent stem cell signaling pathway, 
being a promising therapeutic approach in lung 
adenocarcinoma patients[90]. The studies performed 
until now showed that Wnt inhibitors and modulators 
can eliminate drug-resistant CSCs and tumor-initiating 
cells but more studies are needed regarding the safety 
of this therapeutic approach, given the essential role of 
Wnt signaling in tissue homeostasis and repair[91].

PI3K/Akt/mTOR signaling pathway is an important 
cascade of phosphorylation reactions, comprising 
several key molecules involved in carcinogenesis 
processes: PI3K - presents activating mutations in 
several human cancers; Akt - overexpression/activa
tion of this protein kinase is associated with tumor 
metastasis and invasion; mTOR - protein kinase critical 
for cancer cell growth, cell proliferation, survival and 
angiogenesis[59].

Many studies suggest the involvement of this 
signaling pathway in maintaining CSCs features. In 
breast cancer, inhibition of PI3K or Akt activity reduced 
generation and growth of CD44/CD24 mammospheres, 
leading to stem cell/mesenchymal phenotype loss 
and recovery of epithelial-like markers[92]. In prostate 
cancer, PI3K/Akt/mTOR pathway deregulation is 
associated with CSCs quiescence and maintenance; 
moreover, prostate CSCs seem to present resistance to 
selective mTOR inhibitors[93]. Another study showed that 
combination between PI3K/mTOR inhibitor (BEZ235) 
and radiotherapy increased radiosensitivity and 
apoptosis, and also reduced CSCs marker expressions 
in prostate cancer radioresistant cell lines[94]. In 
endometrial tumors, PTEN/PI3K/Akt/mTOR pathway 
aberrant activation by miRNAs is a common event, 

contributes to development and maintenance of CSCs 
and acquisition of epithelial-to-mesenchymal transition, 
highlighting the involvement of Hedgehog cascade in 
cancer cell invasion, metastasis, chemotherapeutic 
resistance and tumor recurrence[77]. Canonical Hed
gehog signaling involves three ligands: Sonic (SHH), 
Indian (IHH), and Desert (DHH) with different expre
ssion depending on cell type; SHH is widely expressed, 
mostly during embryogenesis, IHH is found in hema
topoietic cells, bone, and cartilage, while DHH is 
expressed in the peripheral nervous system and testes. 
Hedgehog signaling implies Hedgehog ligands binding to 
Patched receptor, Smoothened activation, and activation 
of transcriptional effectors that belong to the GLI 
family[78,79]. Aberrant activation of Hedgehog signaling 
may be due to gene mutations, resulting in ligand-
independent pathway activation, or by interaction with 
other molecular signaling pathways, such as Ras/Raf/
MEK/Erk, PI3K/Akt/mTOR, and Notch. Thus, there are 
many studies sustaining that the combination therapies 
targeting more than one signaling pathway improves 
antitumor efficacy and survival in animal models[80]. 
There are also several preclinical studies showing that 
in several cancers, Hedgehog signaling inhibition using 
specific inhibitors of Smoothened leads to the blocking 
of drug resistance, relapse, and metastasis. In basal 
cell carcinoma and medulloblastoma patients, Smoo
thened inhibitors such as vismodegib, BMS-833923, 
saridegib (IPI-926), sonidegib/erismodegib (LDE225), 
PF-04449913, LY2940680, LEQ 506, and TAK-441 
were used as monotherapy with promising results[81]. 
A recent study reported a significant negative associa
tion between GLI1 and GLI2 expression and overall 
survival, and also an increase of DHH plasma levels 
in acute myeloid leukemia patients. By in vitro and 
in vivo experiments the authors demonstrated that 
GLI1/2 inhibition induces apoptosis, and reduces 
proliferation, and colony formation in acute myeloid 
leukemia cells, and also increases the survival in murine 
models[82]. Another study focused on biliary tract 
cancer showed that inhibition of Hedgehog and mTOR 
signaling pathways with rapamycin and vismodegib 
specific inhibitors results in decrease of Nanog and Oct-4 
expressions and also in decrease of CSCs and ALDH-
positive cells proliferation[83]. In pancreatic cancer, 
the combination of focal radiation with Hedgehog 
inhibitors reduces lymph node metastasis, sustaining 
the involvement of this signaling pathway in carcino
genesis[84].

Wnt/β-catenin signaling pathway is one of the most 
deregulated pathways in many cancers, including 
leukemia, colon, breast and skin cancers. For instance, 
in human colon carcinoma, mutations in adenomatous 
polyposis coli (APC) result in aberrant activation of Wnt 
signaling and induce transformation of epithelial cells[60]. 
There are also studies that support the involvement of 
Wnt signaling in self-renewal and maintenance of stem 
cells and CSCs, in several tissues like skin, intestine and 
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Targeting microenvironment
The tumor microenvironment provides necessary signals 
for CSCs maintenance, regulation of self-renewal and 
homeostatic processes such as angiogenesis, hypoxia 
and weakly acidic pH. 

Interaction between CSCs and tumor stroma is 
ensured by CXCL12-CXCR4 axis. CXCL12 [also called 
stromal-derived factor-1 (SDF-1)] is a chemokine that 
binds its receptor CXCR4 and it is involved in migration, 
invasion and survival of normal and malignant cells[100]. 
CXCR4 is highly expressed on several stem cells mainly 
haematopoietic, but also on endothelial, neural and 
embryonic stem cells, facilitating their response to 
gradients of CXCL12 produced in case of tissue damage 
and hypoxia. On the other hand, CXCL12 ligand has a 
constitutive expression on stromal cells in many tissues. 
It has an increased level in bone marrow, lymph nodes, 
lung and liver, and a low level in small intestine, skin 
skeletal muscle[101].

Many studies have emphasized that under physio
logical conditions CXCL12-CXCR4 axis plays a crucial 
role in processes like normal development, tissue 
regeneration and repair. With respect to tumor growth, 
it was shown that CXCL12-CXCR4 axis ensures a 
close contact between cells and tumor stroma and 
consequently activates various signals related to 
cell growth, metastasis and chemoresistance[102]. In 
human breast cancer CXCL12 generated by stromal 
fibroblasts exerts two types of effects on tumor growth: 
an endocrine effect by promoting angiogenesis via 
recruiting endothelial progenitor cells into the tumor 
mass, as well as a paracrine effect by acting directly on 
tumor cells through CXCR4[103].

The important roles of CXCL12-CXCR4 axis in cancer 
led to an intense research for developing drugs that 
inhibit signaling through this axis. A series of inhibitors 
have been investigated, targeting either CXCR4 or 
CXCL12. Among CXCR4 inhibitors, AMD3100, also 
known as plerixafor, induces the rapid mobilization of 
hematopoietic stem and progenitor cells into the blood 
in mice and humans[104], inhibits growth of intracranial 
glioblastoma and medulloblastoma xenografts by 
increasing apoptosis and decreasing the proliferation 
of tumor cells[105], and can reduce the intraperitoneal 
dissemination of epithelial ovarian cancer[106]. On 
the other hand, in a recent study it was shown that 
treatment with the AMD3100 diminished metastatic 
growth, but it didn’t affect significantly the frequency 
of metastases or overall survival in a murine model of 
metastatic human non-small cell lung cancer[107].

CTCE-9908 is another CXCR4 antagonist that proved 
to be effective in reducing both tumor growth and 
metastasis in xenograft mouse models of inflammatory 
breast cancer[108] and also in an orthotopic model of 
esophageal carcinoma[109]. A recent study highlighted 
the role of CTCE-9908 in decreasing the tumor invasivity 
and angiogenesis in prostate cancer[110].  

One of the most studied CXCL12 inhibitor is NOX-A12 

being involved in epithelial-mesenchymal transition and 
CSC maintenance[95].

PTEN (phosphatase and tensin homolog) is a tumor 
suppressor and an inhibitor of PI3K and ERK activities, 
being one of the most inactivated tumor suppressor 
genes in cancers; many tumors present loss of PTEN 
function by mutations, deletions, transcriptional silen
cing, or protein instability affecting important cell 
processes such as survival, proliferation, energy meta
bolism and cellular architecture. Loss of PTEN activity 
was also linked to CSC development and proliferation 
in several cancers, including prostate, lung, intestinal, 
and pancreatic cancer[95]. Moreover, PTEN loss and 
Akt activation lead to increase activity of β-catenin in 
hematopoietic stem cells while Notch signaling activation 
results in reduced PTEN expression in human T-cell 
acute lymphoblastic leukemia[96].

Nuclear factor kappa B (NF-κB) is a transcription 
factor constitutively activated in several tumors, being 
also associated with self-renewal and expansion 
of CSCs[97]. NF-κB interacts with many apoptosis–
related proteins, including Bcl-xL, Bcl-2, survivin, 
cellular inhibitors of apoptosis (cIAPs), TRAF and cell 
cycle regulatory components, and NF-κB aberrant 
expression was related to cancer development and 
progression, chemoresistance, chronic inflammation 
and autoimmune diseases[60]. 

In hepatocellular carcinoma cell lines, one of the 
most activated signaling pathways is NF-kB cascade; 
NF-kB inhibition using SN50, suppressed tumor cell 
growth and the authors suggested that targeting NF-kB 
signaling might specifically inhibit CSCs populations and 
it could be considered a new therapeutic strategy for 
hepatocellular carcinoma patients with poor prognosis[97]. 
Pancreatic ductal adenocarcinoma characterized by a 
pronounced hypoxic tumor microenvironment presents 
epithelial-mesenchymal transition and stem-like features 
related to NF-κB signaling activation. An in vitro study 
demonstrated that inhibition of NF-κB with triptolide can 
reverse epithelial-mesenchymal transition and reduced 
migration, self-renewal activity, stem cell-related 
signaling[98]. NF-kB signaling is also considered an impor
tant therapeutic target in breast cancer; HER2-NF-kB-
HER2 pro-survival pathway seems to be activated in 
breast CSCs upon radiation therapy[99].

Numerous studies have focused on identifying 
the molecular mechanisms and signaling pathways 
characteristic for CSCs, in solid and hematological 
malignancies. Notch, Hedgehog, Wnt/b-catenin, NF-
kB, PI3K/Akt, and PTEN cascades present aberrant 
activation in cancers and they have been associated 
with high proliferative and metastatic capacity, self-
renewal and differentiation of CSCs and also multi-drug 
resistance, being considered attractive targets for CSCs 
specific eradication. However, more studies are required 
to demonstrate the safety of these targeted therapies, 
considering the crucial role of these signaling pathways 
for normal stem cell maintenance[97].
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responsive is a dynamic area of research; liposomes, 
micelles, polymers and inorganic nanoparticles have 
been tested for anticancer therapy[122]. An improved 
drug-delivery method is to encapsulate drugs into silica 
matrices like camptothecin and doxorubicin[122,123].

Sodium bicarbonate is one of the systemic buffers 
that can be used to alkalinize the microenvironment. 
In intraductal tumors it have been shown that sodium 
bicarbonate can prevent or slow down the transition 
from in situ to invasive cancer[124].

One approach, more captivating is to regulate 
cellular pH with drugs that inhibit CAIX, a hypoxia and 
HIF-1-inducible protein, overexpressed in many cancers. 
Data from phase III clinical trial suggest that CAIX score 
can be also used as statistically prognostic biomarker 
for survival in patients with high-risk nonmetastatic 
renal cell carcinoma (ccRCC)[125].

Targeting the tumor microenvironment might affect 
communication with stroma and self-regulating pro
cess, the vasculature as the main nutrients supply, 
and essential features like oxygen level and acidity 
needed by CSCs, all these being fundamentals for CSCs 
maintenance. However these strategies are not specific 
enough and might affect also normal stem cells and 
their stroma. Consequently, a more particular approach 
is needed that addresses only tumor stroma.

Targeting ATP-binding cassette transporters
The ability to isolate and characterize CSCs from 
different tumors facilitated a more specific investigation 
of the therapeutic possibilities based on another 
distinctive feature of the CSCs, chemoresistance[126]. 
CSCs identification by augmented efflux of Hoechst 
33342 dye through ATP-binding cassette (ABC) trans
porters (defined as side population, SP cells) in flow 
cytometry analysis, proved to be very useful in isolating 
hematopoietic stem cells, and a variety of CSCs from 
solid tumors, including ovarian, breast, colon and hepatic 
cancers[127-131]. Aberrant expression of ABC transporters 
is a major mechanism of chemoresistance in cancers 
cells, including cancer CSCs[132] but may be generated 
by other mechanisms involved directly or indirectly in 
the process, from transcription to protein expression. 
All the mechanisms involved in ABC transporter 
modulation might be potential targets for overcoming 
chemoresistance in CSCs. 

ABC transporter proteins are members of the ABC 
superfamily that have as most important physiologic role 
prevention of the accumulation of xenobiotics and toxic 
compounds in normal cells. These efflux pumps consist 
of a single or multiple sets of transmembrane domains 
and nucleotide binding domains. Nucleotide binding 
domains hydrolyze ATP giving power for the efflux while 
a variety of structurally unrelated substrates, including 
drugs, sugars, proteins, and metabolites are “pumped-
out” through the transmembrane domains. 

Among the numerous members of the ABC-trans
porters described to date, only few were well docu

that seems to suppress CXCL12-induced chemotaxis 
of chronic lymphocytic leukemia cells and to cause 
chemosensitization[111]. In addition, Liu et al[112] observed 
that this compound had the potential to improve tumor 
response in glioblastoma multiforme animal model after 
irradiation.

CXCL12-CXCR4 axis can also promote angiogenesis. 
Liang et al[113] have shown that CXCR4 induces an 
increased expression of vascular-endothelial growth 
factor (VEGF) at both the mRNA and protein levels 
through the activation of PI3K/Akt pathway.

Tumor angiogenesis is another mechanism pro
moted by microenvironment that has been related 
with CSCs survival and tumor growth, since targeting 
VEGF can lead to normalization of the vasculature, 
decrease in tumor growth and disruption of the CSCs 
niche[60,114]. Inhibitors against the VEGF/VEGFR-system 
are already in clinical use. Among the approved drugs 
that target VEGF/VEGFR-system are bevacizumab, 
anti-VEGF blocking antibody, and pazopanib, sorafenib 
and sunitinib, VEGFR-2 pathway inhibitors. Moreover, 
a series of compounds are tested in clinical trials or 
they are just in experimental phase[115]. From those, 
fruquintinib (HMPL-013), a small molecule inhibitor very 
potent and highly selective against VEGFR family, is 
currently in phase II clinical studies[115].

Another feature of the tumor microenvironment 
is hypoxia that is regulated by inducible transcription 
factors HIF-1 and HIF-2. Many studies correlated 
tumor hypoxia with tumor growth, cancer progression, 
metastasis, resistance to chemo- and radiotherapy. 
Therefore targeting HIF activity might represent an 
effective method of inhibit tumor metastasis and 
improve the outcome of chemo- and radiotherapy[116,117].

In breast cancer, inhibition HIF activity in BrCa 
cells by using RNA interference or digoxin treatment 
prevent primary tumor growth and also reduce breast 
cancer dissemination in lungs by down-regulating the 
expression of angiopoietin-like 4 (ANGPTL4) and L1 
cell adhesion molecule (L1CAM) 21860410. In a recent 
study, Gillespie et al[118] investigated the inhibition of 
HIF-1α by using small interfering RNA in an orthotopic 
mouse model for glioblastoma. In vivo treatment 
reduced tumor growth and increased survival.

Another important therapeutic target can be repre
sented by acidic extracellular pH, a major feature of 
tumor tissue that is the result of cancer cells increased 
metabolic activity and of the poor vascular perfusion 
of tumors[119,120]. As it was shown in previous studies, 
tumor acidity can offer a selective advantage of cancer 
cells over the normal tissues and contribute to drug 
resistance[119,121].

The acidity of tumor environment can be managed 
either by using delivery drugs that have specificity for 
acid environment, or can be reversed directly with 
systemic buffers or indirectly by using inhibitors for pH-
regulatory pathways like carbonic anhydrase IX (CAIX).

Developing compounds that are tumoral acidic pH-
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agents.
Although the expression of ABC transporters could 

render CSCs resistant to drugs, it is not the unique 
cause of resistance by ABC proteins, as multiple 
levels of regulation between transcription and protein 
expression might be susceptible to modifications. Future 
trends of drug development should consider such 
levels of regulation of ABC transporters that might be 
speculated in cancer therapy. One such direction should 
evaluate, for example, the potential of using miRNAs 
targeting specific RNA that results in its degradation. 
MiR-328, miR 519c, miR-520h, miR-487a, miR-181a 
are only few of the miRNAs reported to be involved in 
ABC transporter regulation. 

Recently, was observed that the presence of side 
population (SP) cells in tumors is highly dependent 
on the driving genetic alterations of the tumor. For 
example, hepatic tumors driven by Myc, but not Akt 
and RAS, had a significant number of SP cells that 
show the same properties as chemoresistant tumor-
initiating CSCs. These studies show that even the 
common mechanisms of chemoresistance may change 
under genomic alterations conditions that are very 
frequent in cancer. There are increasing evidence that 
small-molecule tyrosine kinase inhibitors (TKIs), such 
as AST1306, lapatinib, linsitinib, masitinib, motesanib, 
nilotinib, telatinib and WHI-P154, can inhibit ABC 
transporters, suggesting that these TKI might have 
also a direct effect on ABC proteins inhibitors[137]. 
Effect of Akt, PI3K and mTOR inhibitors on ABC trans
porters trafficking and/or expression has been well 
documented[138]. Particularly, LY294002, a derivative of 
quercetin, is able to inhibit PI3Ks, mTOR and ABCG2 
and has been recently proposed as a new candidate to 
target efficiently ABCG2-expressing CSCs that depend 
on Akt signaling for survival. ABCG2 expression and the 
SP might be regulated by PTEN through the PI3K/Akt 
pathway, which was proposed as a potentially effective 
strategy for targeting CSCs[139]. 

Using nanomedicines as delivery vehicles can 
enhance the therapeutic response in resistant tumors 
by bypassing efflux pumps or by increasing the 
concentration of drugs in CSCs at a given time point[140].

Simultaneous targeting of genomic alterations 
that are responsible for different types of cancer and 
resistance phenotypes together with new strategies of 
delivery and retention of the drugs inside the CSCs, will 
allow the development of more selective therapy.

Manipulation of miRNA expression
MicroRNAs (miRs) are small non-coding RNAs (20 
to 24 nucleotides in length) that negatively regulate 
post-transcription by binding to the 3′UTR of target 
messenger RNA, having a broad range of effects over 
self-renewal, differentiation and division of cells[141]. 
MiRNA are involved not only in maintaining normal 
cell functions, but also might modify several signaling 
pathways that could transform stem cells into cancer 
stem cells. Aberrant expression of miRNA in cancer 

mented to be expressed in human CSCs: Multidrug 
resistance 1 (MDR1) or P-glycoprotein (Pgp)/ABCB1, 
multidrug resistance protein 1 (MRP1)/ABCC1, and 
breast cancer resistance protein (BCRP)/ABCG2/
MXR/ABCP. These proteins differ in structure and in 
substrate specificity. MDR1 is a protein that confers 
cross-resistance to many antitumor agents, including 
anthracyclines, mitoxantrone, epipodophyllotoxins, and 
taxanes. ABCC1 is structurally similar to ABCB1 but 
shares only 15% amino acid sequence identity; it also 
generates resistance to anthracyclines, mitoxantrone, 
and epipodophyllotoxins but differs from MDR1 in 
the level of resistance to taxanes. BCRP also confers 
resistance to mitoxantrone, but anthracyclines resistance 
was found to depend on mutations at the codon 482[133].

The new concept of targeting ABC transporters 
considers inhibitors as “CSC sensitizing agents”. Clinical 
studies have attempted to overcome drug resistance 
by combination therapies in which a cytotoxic drug was 
given along with an ABC-transporter inhibitor. However, 
ABCB1 inhibitors have shown very limited effectiveness 
in clinical trials despite the debate on the fact that the 
clinical trials on the first generation of inhibitors have 
not been targeting CSCs but only the reduction of 
the tumors that express a particular drug transporter 
(usually ABCB1). If the stem cells are considered the 
principal culprits of drug resistance, the efficacy of ABC 
inhibitors would be better evaluated monitoring the 
relapse instead of tumor size reduction[134]. However, 
ABC inhibitors would be most effective if are combined 
with an anticancer agent that specifically targets the 
stem cells. 

Three generations of ABC transporter blockers were 
investigated until now and the fourth generation, based 
on natural compounds, is under development[135].

First generation of inhibitor drugs were already in 
use for different conditions and also were able to block 
MDR1 (ABCBC1), such as calcium channel inhibitors like 
verapamil, immuno-supressants like cyclosporin A, anti-
arrhythmics and neuroleptics like quinidine, reserpine, 
and yohimbine, and antiestrogens like tamoxifen and 
toremifene. The efficacy of these drugs was limited by 
their toxicity, which urged the development of drugs 
with less important side effects as first generation 
compounds.

Second generation of MDR1 modulators like R-vera
pamil, elacridar (GF120918), dofequidar (MS-209), 
valspodar (PSC833), biricodar (INCEL, VX-710), or 
timcodar (VX-853) were derived from first generation 
P-gp modulators. Although second generation modu
lators are less toxic than first generation modulators, 
they still induce important side effects due to nonse
lective inhibition of multiple cell ABC transporters and 
unpredictable pharmacokinetic interactions[136].

Third generation modulators such as Zosuqui
dar (LY335979), oc144093 (ONT-093), laniquidar 
(R101933), and tariquidar (XR-9576), which are more 
selective inhibitors of ABCB1, ABCC1, ABCG2, are still 
in different phases of investigation as CSCs sensitizing 
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and increasing of apoptosis[153]. Likewise, combined 
treatment with TRAIL and cytarabine or daunorubicin, 
has been shown to suppress the growth of acute 
myeloid progenitors[154]. Furthermore, TRAIL in addition 
to Bortezomib, a proteasome inhibitor, was recently 
shown trigger apoptosis in glioblastoma stem cells[155]. 
Moreover, mesenchymal stem cells (MSC) engineered 
to express TRAIL though transduction with a lentiviral 
vector, were used to activate apoptosis in of squamous 
and lung cancer stem cell population. Experiments were 
done by injecting TRAIL- secreting MSC subcutaneously 
into nude mice that hold tumors. Results showed that 
MSC migrate and localized near the cancer site and 
inhibited tumor growth through apoptosis induction[156].

Another target in inducing CSCs death might be 
NF-kB, a transcription factor linked to the control of 
apoptosis signaling. Mainly, NF-kB inhibits apoptosis 
and promotes cell proliferation, inflammation, tumor 
promotion, angiogenesis and metastasis[157-159].  In breast 
cancer, pharmacological inhibition of NF-kB with small-
molecules like parthenolide, pyrrolidinedithiocarbamate 
and its analog diethyldithiocarbamate preferentially 
target breast cancer stem cells. These results underline 
that NF-kB activity is critical to maintain the survival 
of tumor-initiating cancer stem cells[160]. Moreover, 
inhibition of NF-kB by the proteasome inhibitor MG-132 
together with the anticancer drug idarubicin induced 
apoptosis preferentially in the leukemic stem cells 
population but considerably less in normal hematopoietic 
stem cells[161].

Targeting CSC population by reactivation of apoptosis 
programs has been shown in preclinical studies to offer 
the possibility to eradicate cancers. Future challenges 
should include the increasing of specificity and efficiency 
in targeting cancer stem cells and avoid toxicity of 
normal tissue stem cells.

Induction of CSCs differentiation
Traditional anti-cancer therapies successfully manage 
differentiated cancer cells but did not affect CSCs. 
This observation leads to another method to restrain 
cancer progression, induction of CSCs differentiation 
that became favored over self-renewal programs, 
diminishing CSC population. Many studies are currently 
in progress proposing various differentiation agents like: 
retinoic acid, histone deacetylase inhibitors, miRNAs, 
tyrosine-kinase and signaling pathways inhibitors. 

Retinoic acid and its analogs (ATRA) are currently 
used to treat acute promyelocytic leukemia. Retinoic 
acid regulates several chromatin remodeling factors due 
to its interaction with retinoid receptors[162]. Campos et 
al[163] demonstrated that ATRA induced differentiation of 
glioma CSCs, and showed that the anti-tumor effect is 
present both in vitro and in vivo experiments. Moreover, 
Ginestier et al[164] showed that modulation of retinoid 
signaling may might promote self-renewal or induce 
differentiation of breast CSCs, and suggested that ATRA 
may be considered as targeted therapy for breast CSC 

stem cells was noted by many studies. MiRNAs 
differentially regulate the key properties of CSCs, 
including cell-cycle exit and differentiation, prosurvival 
and antistress mechanisms and EMT, migration and 
invasion, which increase tumor initiation and metastatic 
potential[142]. They can act either as oncogenes or tumor 
suppressors.

Targeting oncogenic miRNAs can be achieved by 
antisense oligonucleotide inhibition. Studies have 
shown that miR-21 has been found to be frequently 
up-regulated in different CSCs[143]. Thus, knockdown of 
miR-21 inhibits cell proliferation, migration and tumor 
growth in breast cancers[144,145], ovarian[146], and lung 
cancer[147]. 

Several studies have exposed the potential of miRNA 
based therapeutics as a novel strategy towards cancer 
stem cells. MiR-34 is a target of tumor suppressor gene 
p53 and is down-regulated in many cancers[148]. Liu et 
al[149] showed that miR-34a, was underexpressed in 
CD44+ prostate cancer cells and increased expression 
of miR-34a in CD44+ prostate cancer cells inhibited 
clonogenic expansion, tumor regeneration, and meta
stasis. Moreover, Shi et al[150] demonstrated that trans
fection of synthetic miR-34a in CD44+ non-small cell 
lung cancer cell lines inhibited clonogenic expansion, 
and tumor regeneration in vivo. Consistently, forced 
expression of miR-124 and miR-137 in human derived 
glioblastoma stem cells leads to loss of their self-
renewal and oncogenic capacity, leaving normal stem 
and precursor cells unharmed[151]. 

Abnormal miRNA expressions lead to the initiation, 
development, and progression of cancer. Thus, miRNA 
based therapy that can correct abnormal transcripts at 
CSCs level show great potential for cancer cure. 

Induction of CSCs apoptosis
Apoptosis is a critical mechanism that mediates death 
and survival through a complex signaling mechanism. 
Escape from this system is the precondition for cancer 
initiating cells. Usually, the apoptotic mechanisms are 
impaired during cancer development and progression.

Induction of apoptosis in CSC holds great promise 
for cancer therapy. Therefore, many compounds have 
been developed to target intrinsic and extrinsic apoptotic 
pathways. For example, activating of the death receptors 
[CD95 and trimeric human tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL)], part of extrinsic 
apoptotic pathway, leads to caspase-8 activation. 
Once activated, caspase-8 either directly cleaves and 
activates effector caspase-3 or, alternatively, processes 
Bid into the active fragment tBid, which translocates 
to mitochondrial membranes to initiate mitochondrial 
outer membrane permeabilization[152]. Treatment with 
TRAIL in combination with various anticancer agents 
was reported to be effective in removing cancer stem 
cells. Thus, co-treatment with cisplatin was described 
to be very efficient in reducing triple negative breast 
cancer stem cells through inhibition of Wnt signaling 
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oxygen and vascularity, preventing efficient delivery of 
the drugs. 

Future challenges should include the increasing of 
specificity and efficiency in targeting CSCs, avoiding 
toxicity of normal tissue stem cells, and also new 
strategies of delivery and retention of the drugs inside 
the CSCs. These new therapies should increase the 
efficacy of existing drugs against aggressive cancers, 
and thus should prevent tumor relapse and enhance 
patient survival. 
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